Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762527102> ?p ?o ?g. }
- W2762527102 endingPage "230" @default.
- W2762527102 startingPage "193" @default.
- W2762527102 abstract "Prognostic models for disease occurrence, tumor progression and survival are abundant for most types of cancers. Physicians and cancer patients are utilizing these models to make informed treatment decisions and corresponding arrangements. However, not all cancer prognostic models are built and validated rigorously. Some are more useful and reliable than others. In this chapter, we briefly introduce some popular machine learning methods for constructing cancer prognostic models, and discuss pros and cons of each. We also introduce the commonly used discrimination and calibration metrics for assessing predictive performance and validating the prognostic models. In the end, we outline several challenges of using prognostic models in the real world for clinical decision-making support, and propose related suggestions." @default.
- W2762527102 created "2017-10-20" @default.
- W2762527102 creator A5006210831 @default.
- W2762527102 creator A5014009582 @default.
- W2762527102 date "2017-01-01" @default.
- W2762527102 modified "2023-09-23" @default.
- W2762527102 title "Machine Learning Techniques in Cancer Prognostic Modeling and Performance Assessment" @default.
- W2762527102 cites W1933386641 @default.
- W2762527102 cites W1947228865 @default.
- W2762527102 cites W1965380313 @default.
- W2762527102 cites W1965801346 @default.
- W2762527102 cites W1969260982 @default.
- W2762527102 cites W1973448749 @default.
- W2762527102 cites W1974337685 @default.
- W2762527102 cites W1976610059 @default.
- W2762527102 cites W1982183738 @default.
- W2762527102 cites W1983024255 @default.
- W2762527102 cites W1986546598 @default.
- W2762527102 cites W1987915768 @default.
- W2762527102 cites W1988790447 @default.
- W2762527102 cites W1990351156 @default.
- W2762527102 cites W1994596297 @default.
- W2762527102 cites W2003756933 @default.
- W2762527102 cites W2011186625 @default.
- W2762527102 cites W2016023958 @default.
- W2762527102 cites W2018454925 @default.
- W2762527102 cites W2022460880 @default.
- W2762527102 cites W2027463308 @default.
- W2762527102 cites W2030844500 @default.
- W2762527102 cites W2044734436 @default.
- W2762527102 cites W2053461345 @default.
- W2762527102 cites W2062311207 @default.
- W2762527102 cites W2063483916 @default.
- W2762527102 cites W2070216889 @default.
- W2762527102 cites W2074932800 @default.
- W2762527102 cites W2086174097 @default.
- W2762527102 cites W2087347434 @default.
- W2762527102 cites W2089378422 @default.
- W2762527102 cites W2092181138 @default.
- W2762527102 cites W2093729382 @default.
- W2762527102 cites W2108268158 @default.
- W2762527102 cites W2108728387 @default.
- W2762527102 cites W2113847025 @default.
- W2762527102 cites W2114345835 @default.
- W2762527102 cites W2117851878 @default.
- W2762527102 cites W2121815876 @default.
- W2762527102 cites W2125223451 @default.
- W2762527102 cites W2126436234 @default.
- W2762527102 cites W2128153491 @default.
- W2762527102 cites W2128409425 @default.
- W2762527102 cites W2128552148 @default.
- W2762527102 cites W2128718068 @default.
- W2762527102 cites W2129554678 @default.
- W2762527102 cites W2129925362 @default.
- W2762527102 cites W2134978098 @default.
- W2762527102 cites W2136338911 @default.
- W2762527102 cites W2137255856 @default.
- W2762527102 cites W2139212933 @default.
- W2762527102 cites W2140218006 @default.
- W2762527102 cites W2141822436 @default.
- W2762527102 cites W2143426320 @default.
- W2762527102 cites W2149407433 @default.
- W2762527102 cites W2151443411 @default.
- W2762527102 cites W2153476503 @default.
- W2762527102 cites W2159771669 @default.
- W2762527102 cites W2159966843 @default.
- W2762527102 cites W2164801635 @default.
- W2762527102 cites W2165867286 @default.
- W2762527102 cites W2168404696 @default.
- W2762527102 cites W2221789957 @default.
- W2762527102 cites W2324845196 @default.
- W2762527102 cites W2417673889 @default.
- W2762527102 cites W2485936436 @default.
- W2762527102 cites W2498119267 @default.
- W2762527102 cites W2503920952 @default.
- W2762527102 cites W2963982993 @default.
- W2762527102 cites W3099478002 @default.
- W2762527102 cites W4232344051 @default.
- W2762527102 cites W4244934246 @default.
- W2762527102 cites W4297944103 @default.
- W2762527102 doi "https://doi.org/10.1007/978-981-10-0126-0_13" @default.
- W2762527102 hasPublicationYear "2017" @default.
- W2762527102 type Work @default.
- W2762527102 sameAs 2762527102 @default.
- W2762527102 citedByCount "2" @default.
- W2762527102 countsByYear W27625271022019 @default.
- W2762527102 countsByYear W27625271022021 @default.
- W2762527102 crossrefType "book-chapter" @default.
- W2762527102 hasAuthorship W2762527102A5006210831 @default.
- W2762527102 hasAuthorship W2762527102A5014009582 @default.
- W2762527102 hasBestOaLocation W27625271022 @default.
- W2762527102 hasConcept C105795698 @default.
- W2762527102 hasConcept C119857082 @default.
- W2762527102 hasConcept C121608353 @default.
- W2762527102 hasConcept C126322002 @default.
- W2762527102 hasConcept C143998085 @default.
- W2762527102 hasConcept C154945302 @default.
- W2762527102 hasConcept C165838908 @default.