Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762544842> ?p ?o ?g. }
- W2762544842 endingPage "31" @default.
- W2762544842 startingPage "15" @default.
- W2762544842 abstract "The performance analysis of a single cylinder spark ignition engine fuelled with ethanol – petrol blends were carried out successfully at constant load conditions. E0 (Petrol), E10 (10% Ethanol, 90% Petrol), E20 (20% Ethanol, 80% Petrol) and E30 (30% Ethanol, 70% Petrol) were used as fuel. The Engine speed, mass flow rate, combustion efficiency, maximum pressure developed, brake specific fuel consumption and Exhaust gas temperature values were measured during the experiment. Using the experimental data, a Levenberg Marquardt Artificial Neural Network algorithm and Logistic sigmoid activation transfer function with a 4–10–2 model was developed to predict the brake specific fuel consumption, maximum pressure and combustion efficiency of G200 IMEX spark ignition engine using the recorded engine speed, mass flow rate, biofuels ratio and exhaust gas temperature as input variables. The performance of the Artificial Neural Network was validated by comparing the predicted data with the experimental results. The results showed that the training algorithm of Levenberg Marquardt was sufficient enough in predicting the brake specific fuel consumption, combustion pressure and combustion efficiency of the test engine. Correlation coefficient values of 0.974, 0.996 and 0.995 were obtained for brake specific fuel consumption, combustion efficiency and pressure respectively. These correlation coefficient obtained for the output parameters are very close to one (1) showing good correlation between the Artificial Neural Network predicted results and the experimental data while the Mean Square Errors were found to be very low (0.00018825 @ epoch 10 for brake specific fuel consumption, 1.0023 @ epoch 3 for combustion efficiency and 0.0013284@ epoch 5 for in-cylinder pressure). Therefore, Artificial Neural Network toolbox called up from MATLAB proved to be a useful tool for simulation of engine parameters. Artificial Neural Network model provided accurate analysis of these complex problems and has been found to be very useful for predicting the performance of the spark ignition engine. Thus, this has proved that Artificial Neural Network model could be used for predicting performance values in internal combustion engines, in this way it would be possible to conduct time and cost efficient studies instead of long experimental ones." @default.
- W2762544842 created "2017-10-20" @default.
- W2762544842 creator A5014642144 @default.
- W2762544842 creator A5051378567 @default.
- W2762544842 creator A5052955487 @default.
- W2762544842 creator A5058151033 @default.
- W2762544842 creator A5076282299 @default.
- W2762544842 creator A5083985681 @default.
- W2762544842 date "2017-10-01" @default.
- W2762544842 modified "2023-09-26" @default.
- W2762544842 title "The Application of Artificial Neural Network in Prediction of the Performance of Spark Ignition Engine Running on Ethanol-Petrol Blends" @default.
- W2762544842 cites W1680499948 @default.
- W2762544842 cites W1965964114 @default.
- W2762544842 cites W1968323903 @default.
- W2762544842 cites W1969868418 @default.
- W2762544842 cites W1980718221 @default.
- W2762544842 cites W1983476744 @default.
- W2762544842 cites W1987738854 @default.
- W2762544842 cites W1992129230 @default.
- W2762544842 cites W1995556087 @default.
- W2762544842 cites W1996122683 @default.
- W2762544842 cites W1997634163 @default.
- W2762544842 cites W1998122548 @default.
- W2762544842 cites W2015150103 @default.
- W2762544842 cites W2025133626 @default.
- W2762544842 cites W2025659748 @default.
- W2762544842 cites W2031795735 @default.
- W2762544842 cites W2043335995 @default.
- W2762544842 cites W2054610260 @default.
- W2762544842 cites W2054640543 @default.
- W2762544842 cites W2069351275 @default.
- W2762544842 cites W2071543090 @default.
- W2762544842 cites W2080701933 @default.
- W2762544842 cites W2081365826 @default.
- W2762544842 cites W2086358793 @default.
- W2762544842 cites W2090087371 @default.
- W2762544842 cites W2095489119 @default.
- W2762544842 cites W2098535269 @default.
- W2762544842 cites W2118922538 @default.
- W2762544842 cites W2137907186 @default.
- W2762544842 cites W2150217550 @default.
- W2762544842 cites W2151858928 @default.
- W2762544842 cites W2161061729 @default.
- W2762544842 cites W2327661526 @default.
- W2762544842 cites W2331393912 @default.
- W2762544842 cites W2335380328 @default.
- W2762544842 doi "https://doi.org/10.18052/www.scipress.com/ijet.12.15" @default.
- W2762544842 hasPublicationYear "2017" @default.
- W2762544842 type Work @default.
- W2762544842 sameAs 2762544842 @default.
- W2762544842 citedByCount "3" @default.
- W2762544842 countsByYear W27625448422019 @default.
- W2762544842 countsByYear W27625448422020 @default.
- W2762544842 countsByYear W27625448422021 @default.
- W2762544842 crossrefType "journal-article" @default.
- W2762544842 hasAuthorship W2762544842A5014642144 @default.
- W2762544842 hasAuthorship W2762544842A5051378567 @default.
- W2762544842 hasAuthorship W2762544842A5052955487 @default.
- W2762544842 hasAuthorship W2762544842A5058151033 @default.
- W2762544842 hasAuthorship W2762544842A5076282299 @default.
- W2762544842 hasAuthorship W2762544842A5083985681 @default.
- W2762544842 hasConcept C103697071 @default.
- W2762544842 hasConcept C105923489 @default.
- W2762544842 hasConcept C127413603 @default.
- W2762544842 hasConcept C128143373 @default.
- W2762544842 hasConcept C171146098 @default.
- W2762544842 hasConcept C178790620 @default.
- W2762544842 hasConcept C185592680 @default.
- W2762544842 hasConcept C25797200 @default.
- W2762544842 hasConcept C2777703250 @default.
- W2762544842 hasConcept C38414747 @default.
- W2762544842 hasConcept C39432304 @default.
- W2762544842 hasConcept C39573554 @default.
- W2762544842 hasConcept C45882903 @default.
- W2762544842 hasConcept C511840579 @default.
- W2762544842 hasConcept C548081761 @default.
- W2762544842 hasConcept C73081478 @default.
- W2762544842 hasConcept C96532641 @default.
- W2762544842 hasConceptScore W2762544842C103697071 @default.
- W2762544842 hasConceptScore W2762544842C105923489 @default.
- W2762544842 hasConceptScore W2762544842C127413603 @default.
- W2762544842 hasConceptScore W2762544842C128143373 @default.
- W2762544842 hasConceptScore W2762544842C171146098 @default.
- W2762544842 hasConceptScore W2762544842C178790620 @default.
- W2762544842 hasConceptScore W2762544842C185592680 @default.
- W2762544842 hasConceptScore W2762544842C25797200 @default.
- W2762544842 hasConceptScore W2762544842C2777703250 @default.
- W2762544842 hasConceptScore W2762544842C38414747 @default.
- W2762544842 hasConceptScore W2762544842C39432304 @default.
- W2762544842 hasConceptScore W2762544842C39573554 @default.
- W2762544842 hasConceptScore W2762544842C45882903 @default.
- W2762544842 hasConceptScore W2762544842C511840579 @default.
- W2762544842 hasConceptScore W2762544842C548081761 @default.
- W2762544842 hasConceptScore W2762544842C73081478 @default.
- W2762544842 hasConceptScore W2762544842C96532641 @default.
- W2762544842 hasLocation W27625448421 @default.
- W2762544842 hasOpenAccess W2762544842 @default.
- W2762544842 hasPrimaryLocation W27625448421 @default.