Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762569629> ?p ?o ?g. }
- W2762569629 endingPage "466" @default.
- W2762569629 startingPage "454" @default.
- W2762569629 abstract "The advent of big data has created opportunities for firms to customize their products and services to unprecedented levels of granularity. Using big data to personalize an offering in real time, however, remains a major challenge. In the mobile advertising industry, once a customer enters the network, an ad-serving decision must be made in a matter of milliseconds. In this work, we describe the design and implementation of an ad-serving algorithm that incorporates machine-learning methods to make personalized ad-serving decisions within milliseconds. We developed this algorithm for Vungle Inc., one of the largest global mobile ad networks. Our approach also addresses other important issues that most ad networks face, such as user fatigue, budget restrictions, and campaign pacing. In an A/B test versus the company’s legacy algorithm, our algorithm generated a 23 percent increase in revenue per 1,000 impressions. Across the company’s network, this increase represents a $1 million increase in monthly revenue." @default.
- W2762569629 created "2017-10-20" @default.
- W2762569629 creator A5031897883 @default.
- W2762569629 creator A5051352179 @default.
- W2762569629 creator A5052293978 @default.
- W2762569629 creator A5069380325 @default.
- W2762569629 creator A5072577970 @default.
- W2762569629 creator A5075576545 @default.
- W2762569629 date "2017-10-01" @default.
- W2762569629 modified "2023-09-26" @default.
- W2762569629 title "Vungle Inc. Improves Monetization Using Big Data Analytics" @default.
- W2762569629 cites W1554763265 @default.
- W2762569629 cites W1753270033 @default.
- W2762569629 cites W1984363873 @default.
- W2762569629 cites W1985759455 @default.
- W2762569629 cites W2021663595 @default.
- W2762569629 cites W2031419028 @default.
- W2762569629 cites W2054390859 @default.
- W2762569629 cites W2099044518 @default.
- W2762569629 cites W2102598266 @default.
- W2762569629 cites W2122825543 @default.
- W2762569629 cites W2128292132 @default.
- W2762569629 cites W2129018774 @default.
- W2762569629 cites W2137619005 @default.
- W2762569629 cites W2139279076 @default.
- W2762569629 cites W2143070628 @default.
- W2762569629 cites W2167264564 @default.
- W2762569629 cites W2265908166 @default.
- W2762569629 cites W2523426716 @default.
- W2762569629 cites W2787894218 @default.
- W2762569629 cites W3007327886 @default.
- W2762569629 cites W3123248257 @default.
- W2762569629 cites W3124617621 @default.
- W2762569629 cites W4294541781 @default.
- W2762569629 doi "https://doi.org/10.1287/inte.2017.0903" @default.
- W2762569629 hasPublicationYear "2017" @default.
- W2762569629 type Work @default.
- W2762569629 sameAs 2762569629 @default.
- W2762569629 citedByCount "6" @default.
- W2762569629 countsByYear W27625696292019 @default.
- W2762569629 countsByYear W27625696292020 @default.
- W2762569629 countsByYear W27625696292022 @default.
- W2762569629 countsByYear W27625696292023 @default.
- W2762569629 crossrefType "journal-article" @default.
- W2762569629 hasAuthorship W2762569629A5031897883 @default.
- W2762569629 hasAuthorship W2762569629A5051352179 @default.
- W2762569629 hasAuthorship W2762569629A5052293978 @default.
- W2762569629 hasAuthorship W2762569629A5069380325 @default.
- W2762569629 hasAuthorship W2762569629A5072577970 @default.
- W2762569629 hasAuthorship W2762569629A5075576545 @default.
- W2762569629 hasBestOaLocation W27625696292 @default.
- W2762569629 hasConcept C10138342 @default.
- W2762569629 hasConcept C124101348 @default.
- W2762569629 hasConcept C127413603 @default.
- W2762569629 hasConcept C136764020 @default.
- W2762569629 hasConcept C139719470 @default.
- W2762569629 hasConcept C144133560 @default.
- W2762569629 hasConcept C162324750 @default.
- W2762569629 hasConcept C162853370 @default.
- W2762569629 hasConcept C186967261 @default.
- W2762569629 hasConcept C18762648 @default.
- W2762569629 hasConcept C195487862 @default.
- W2762569629 hasConcept C2522767166 @default.
- W2762569629 hasConcept C2780602052 @default.
- W2762569629 hasConcept C41008148 @default.
- W2762569629 hasConcept C4216890 @default.
- W2762569629 hasConcept C75684735 @default.
- W2762569629 hasConcept C78519656 @default.
- W2762569629 hasConcept C79158427 @default.
- W2762569629 hasConceptScore W2762569629C10138342 @default.
- W2762569629 hasConceptScore W2762569629C124101348 @default.
- W2762569629 hasConceptScore W2762569629C127413603 @default.
- W2762569629 hasConceptScore W2762569629C136764020 @default.
- W2762569629 hasConceptScore W2762569629C139719470 @default.
- W2762569629 hasConceptScore W2762569629C144133560 @default.
- W2762569629 hasConceptScore W2762569629C162324750 @default.
- W2762569629 hasConceptScore W2762569629C162853370 @default.
- W2762569629 hasConceptScore W2762569629C186967261 @default.
- W2762569629 hasConceptScore W2762569629C18762648 @default.
- W2762569629 hasConceptScore W2762569629C195487862 @default.
- W2762569629 hasConceptScore W2762569629C2522767166 @default.
- W2762569629 hasConceptScore W2762569629C2780602052 @default.
- W2762569629 hasConceptScore W2762569629C41008148 @default.
- W2762569629 hasConceptScore W2762569629C4216890 @default.
- W2762569629 hasConceptScore W2762569629C75684735 @default.
- W2762569629 hasConceptScore W2762569629C78519656 @default.
- W2762569629 hasConceptScore W2762569629C79158427 @default.
- W2762569629 hasIssue "5" @default.
- W2762569629 hasLocation W27625696291 @default.
- W2762569629 hasLocation W27625696292 @default.
- W2762569629 hasLocation W27625696293 @default.
- W2762569629 hasLocation W27625696294 @default.
- W2762569629 hasOpenAccess W2762569629 @default.
- W2762569629 hasPrimaryLocation W27625696291 @default.
- W2762569629 hasRelatedWork W2337265393 @default.
- W2762569629 hasRelatedWork W2509056639 @default.
- W2762569629 hasRelatedWork W2739436898 @default.
- W2762569629 hasRelatedWork W2777139086 @default.