Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762685286> ?p ?o ?g. }
- W2762685286 endingPage "162" @default.
- W2762685286 startingPage "156" @default.
- W2762685286 abstract "NMR diffusometry is a powerful but challenging method to analyze complex mixture. Each component diffuses differently, from the faster small species to the slower large species, corresponding to different signal attenuation. However, the method is highly sensitive to the quality of the acquired data and the performance of the processing used to resolve multiexponential signals influences. Adapting the signal decay sampling to the mixture composition is one way to improve the precision of the measure. In this work, we propose a prediction tool, based on the calculation of the Cramér-Rao lower bound to minimize the variance of diffusion coefficient estimation in order to determine the optimal number of diffusion gradient steps, the best diffusion gradient sampling (among linear, exponential, quadratic and sigmoidal ones) and the optimal maximum diffusion factor. The tool was validated experimentally on a unimer/micelle solution of sodium dodecyl sulfate and on Caelyx®, a commercial liposomal preparation containing a mixture of pegylated-liposomes and sucrose." @default.
- W2762685286 created "2017-10-20" @default.
- W2762685286 creator A5006569430 @default.
- W2762685286 creator A5027151353 @default.
- W2762685286 creator A5048357723 @default.
- W2762685286 creator A5051249255 @default.
- W2762685286 creator A5057987159 @default.
- W2762685286 date "2018-01-01" @default.
- W2762685286 modified "2023-10-18" @default.
- W2762685286 title "NMR diffusometry data sampling optimization for mixture analysis" @default.
- W2762685286 cites W1972993102 @default.
- W2762685286 cites W1980913293 @default.
- W2762685286 cites W1988680835 @default.
- W2762685286 cites W1999185695 @default.
- W2762685286 cites W2007002347 @default.
- W2762685286 cites W2008386999 @default.
- W2762685286 cites W2025316066 @default.
- W2762685286 cites W2027627779 @default.
- W2762685286 cites W2038671066 @default.
- W2762685286 cites W2047423949 @default.
- W2762685286 cites W2064292750 @default.
- W2762685286 cites W2065633892 @default.
- W2762685286 cites W2067526878 @default.
- W2762685286 cites W2076540020 @default.
- W2762685286 cites W2084761689 @default.
- W2762685286 cites W2085947131 @default.
- W2762685286 cites W2090824354 @default.
- W2762685286 cites W2092940781 @default.
- W2762685286 cites W2094852856 @default.
- W2762685286 cites W2099323215 @default.
- W2762685286 cites W2121483967 @default.
- W2762685286 cites W2146200209 @default.
- W2762685286 cites W2166310608 @default.
- W2762685286 cites W2169752360 @default.
- W2762685286 cites W2312209881 @default.
- W2762685286 cites W2321743333 @default.
- W2762685286 cites W2950630380 @default.
- W2762685286 cites W52485495 @default.
- W2762685286 doi "https://doi.org/10.1016/j.jpba.2017.09.028" @default.
- W2762685286 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29031133" @default.
- W2762685286 hasPublicationYear "2018" @default.
- W2762685286 type Work @default.
- W2762685286 sameAs 2762685286 @default.
- W2762685286 citedByCount "4" @default.
- W2762685286 countsByYear W27626852862019 @default.
- W2762685286 countsByYear W27626852862020 @default.
- W2762685286 countsByYear W27626852862021 @default.
- W2762685286 crossrefType "journal-article" @default.
- W2762685286 hasAuthorship W2762685286A5006569430 @default.
- W2762685286 hasAuthorship W2762685286A5027151353 @default.
- W2762685286 hasAuthorship W2762685286A5048357723 @default.
- W2762685286 hasAuthorship W2762685286A5051249255 @default.
- W2762685286 hasAuthorship W2762685286A5057987159 @default.
- W2762685286 hasConcept C113196181 @default.
- W2762685286 hasConcept C120665830 @default.
- W2762685286 hasConcept C121332964 @default.
- W2762685286 hasConcept C134306372 @default.
- W2762685286 hasConcept C140779682 @default.
- W2762685286 hasConcept C151376022 @default.
- W2762685286 hasConcept C162324750 @default.
- W2762685286 hasConcept C176217482 @default.
- W2762685286 hasConcept C184652730 @default.
- W2762685286 hasConcept C185592680 @default.
- W2762685286 hasConcept C186060115 @default.
- W2762685286 hasConcept C18762648 @default.
- W2762685286 hasConcept C199360897 @default.
- W2762685286 hasConcept C21547014 @default.
- W2762685286 hasConcept C2779843651 @default.
- W2762685286 hasConcept C33923547 @default.
- W2762685286 hasConcept C41008148 @default.
- W2762685286 hasConcept C43617362 @default.
- W2762685286 hasConcept C57736034 @default.
- W2762685286 hasConcept C69357855 @default.
- W2762685286 hasConcept C76155785 @default.
- W2762685286 hasConcept C86803240 @default.
- W2762685286 hasConcept C94915269 @default.
- W2762685286 hasConcept C97355855 @default.
- W2762685286 hasConceptScore W2762685286C113196181 @default.
- W2762685286 hasConceptScore W2762685286C120665830 @default.
- W2762685286 hasConceptScore W2762685286C121332964 @default.
- W2762685286 hasConceptScore W2762685286C134306372 @default.
- W2762685286 hasConceptScore W2762685286C140779682 @default.
- W2762685286 hasConceptScore W2762685286C151376022 @default.
- W2762685286 hasConceptScore W2762685286C162324750 @default.
- W2762685286 hasConceptScore W2762685286C176217482 @default.
- W2762685286 hasConceptScore W2762685286C184652730 @default.
- W2762685286 hasConceptScore W2762685286C185592680 @default.
- W2762685286 hasConceptScore W2762685286C186060115 @default.
- W2762685286 hasConceptScore W2762685286C18762648 @default.
- W2762685286 hasConceptScore W2762685286C199360897 @default.
- W2762685286 hasConceptScore W2762685286C21547014 @default.
- W2762685286 hasConceptScore W2762685286C2779843651 @default.
- W2762685286 hasConceptScore W2762685286C33923547 @default.
- W2762685286 hasConceptScore W2762685286C41008148 @default.
- W2762685286 hasConceptScore W2762685286C43617362 @default.
- W2762685286 hasConceptScore W2762685286C57736034 @default.
- W2762685286 hasConceptScore W2762685286C69357855 @default.
- W2762685286 hasConceptScore W2762685286C76155785 @default.