Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762689969> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2762689969 abstract "Convolutional neural networks (CNNs) have been widely used over many areas in compute vision. Especially in classification. Recently, FlowNet and several works on opti- cal estimation using CNNs shows the potential ability of CNNs in doing per-pixel regression. We proposed several CNNs network architectures that can estimate optical flow, and fully unveiled the intrinsic different between these structures." @default.
- W2762689969 created "2017-10-20" @default.
- W2762689969 creator A5007075649 @default.
- W2762689969 date "2017-10-04" @default.
- W2762689969 modified "2023-09-27" @default.
- W2762689969 title "Secrets in Computing Optical Flow by Convolutional Networks" @default.
- W2762689969 cites W2147253850 @default.
- W2762689969 cites W2275385910 @default.
- W2762689969 cites W2285788670 @default.
- W2762689969 cites W2951234442 @default.
- W2762689969 cites W2339609379 @default.
- W2762689969 hasPublicationYear "2017" @default.
- W2762689969 type Work @default.
- W2762689969 sameAs 2762689969 @default.
- W2762689969 citedByCount "0" @default.
- W2762689969 crossrefType "posted-content" @default.
- W2762689969 hasAuthorship W2762689969A5007075649 @default.
- W2762689969 hasConcept C115961682 @default.
- W2762689969 hasConcept C153180895 @default.
- W2762689969 hasConcept C154945302 @default.
- W2762689969 hasConcept C155542232 @default.
- W2762689969 hasConcept C160633673 @default.
- W2762689969 hasConcept C2524010 @default.
- W2762689969 hasConcept C33923547 @default.
- W2762689969 hasConcept C38349280 @default.
- W2762689969 hasConcept C41008148 @default.
- W2762689969 hasConcept C81363708 @default.
- W2762689969 hasConceptScore W2762689969C115961682 @default.
- W2762689969 hasConceptScore W2762689969C153180895 @default.
- W2762689969 hasConceptScore W2762689969C154945302 @default.
- W2762689969 hasConceptScore W2762689969C155542232 @default.
- W2762689969 hasConceptScore W2762689969C160633673 @default.
- W2762689969 hasConceptScore W2762689969C2524010 @default.
- W2762689969 hasConceptScore W2762689969C33923547 @default.
- W2762689969 hasConceptScore W2762689969C38349280 @default.
- W2762689969 hasConceptScore W2762689969C41008148 @default.
- W2762689969 hasConceptScore W2762689969C81363708 @default.
- W2762689969 hasLocation W27626899691 @default.
- W2762689969 hasOpenAccess W2762689969 @default.
- W2762689969 hasPrimaryLocation W27626899691 @default.
- W2762689969 hasRelatedWork W1599910827 @default.
- W2762689969 hasRelatedWork W1692173902 @default.
- W2762689969 hasRelatedWork W2225709525 @default.
- W2762689969 hasRelatedWork W2300805302 @default.
- W2762689969 hasRelatedWork W2551662533 @default.
- W2762689969 hasRelatedWork W2618403665 @default.
- W2762689969 hasRelatedWork W2741546454 @default.
- W2762689969 hasRelatedWork W2759822687 @default.
- W2762689969 hasRelatedWork W2772031001 @default.
- W2762689969 hasRelatedWork W2772386803 @default.
- W2762689969 hasRelatedWork W2796376207 @default.
- W2762689969 hasRelatedWork W2883089954 @default.
- W2762689969 hasRelatedWork W2891179104 @default.
- W2762689969 hasRelatedWork W2907013149 @default.
- W2762689969 hasRelatedWork W2922259208 @default.
- W2762689969 hasRelatedWork W2935959962 @default.
- W2762689969 hasRelatedWork W2968006931 @default.
- W2762689969 hasRelatedWork W2969662912 @default.
- W2762689969 hasRelatedWork W2999001241 @default.
- W2762689969 hasRelatedWork W3102849520 @default.
- W2762689969 isParatext "false" @default.
- W2762689969 isRetracted "false" @default.
- W2762689969 magId "2762689969" @default.
- W2762689969 workType "article" @default.