Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762715547> ?p ?o ?g. }
- W2762715547 endingPage "21730" @default.
- W2762715547 startingPage "21723" @default.
- W2762715547 abstract "Multivariate statistical methods are effective data-driven approaches for complex practical systems. Traditional partial least squares (PLS) serves as a latent projection approach applied to the quality-related process monitoring field widely. However, PLS is not suitable for quality-related fault detection which performs an oblique projection to the X variables. In order to address this problem, an improved principal component regression (IPCR) is proposed in this paper. IPCR separates the process measurements into a quality-related part and a quality-unrelated part. Compared with the conventional method, IPCR can represent the relationship between the fault and product quality more clearly. Furthermore, we design the corresponding test statistics to build the logic of fault detection. A numerical experiment and the Tennessee Eastman process simulator are utilized to illustrate the performance of the proposed approach." @default.
- W2762715547 created "2017-10-20" @default.
- W2762715547 creator A5011996066 @default.
- W2762715547 creator A5056072904 @default.
- W2762715547 date "2017-01-01" @default.
- W2762715547 modified "2023-09-24" @default.
- W2762715547 title "An Improved Principal Component Regression for Quality-Related Process Monitoring of Industrial Control Systems" @default.
- W2762715547 cites W1761337960 @default.
- W2762715547 cites W1970537494 @default.
- W2762715547 cites W1978994389 @default.
- W2762715547 cites W2000395229 @default.
- W2762715547 cites W2001255689 @default.
- W2762715547 cites W2018201690 @default.
- W2762715547 cites W2021040661 @default.
- W2762715547 cites W2029608738 @default.
- W2762715547 cites W2035547598 @default.
- W2762715547 cites W2058944907 @default.
- W2762715547 cites W2063823978 @default.
- W2762715547 cites W2086574088 @default.
- W2762715547 cites W2089468765 @default.
- W2762715547 cites W2092081051 @default.
- W2762715547 cites W2137015384 @default.
- W2762715547 cites W2147062914 @default.
- W2762715547 cites W2147703419 @default.
- W2762715547 cites W2169347809 @default.
- W2762715547 cites W2280977705 @default.
- W2762715547 cites W2293850855 @default.
- W2762715547 cites W2327756241 @default.
- W2762715547 cites W2399774368 @default.
- W2762715547 cites W2413579316 @default.
- W2762715547 cites W2483392170 @default.
- W2762715547 cites W2514010841 @default.
- W2762715547 cites W2547447309 @default.
- W2762715547 cites W2548356148 @default.
- W2762715547 cites W2560234987 @default.
- W2762715547 cites W2560448787 @default.
- W2762715547 cites W2565025742 @default.
- W2762715547 cites W2588638671 @default.
- W2762715547 doi "https://doi.org/10.1109/access.2017.2761418" @default.
- W2762715547 hasPublicationYear "2017" @default.
- W2762715547 type Work @default.
- W2762715547 sameAs 2762715547 @default.
- W2762715547 citedByCount "25" @default.
- W2762715547 countsByYear W27627155472018 @default.
- W2762715547 countsByYear W27627155472019 @default.
- W2762715547 countsByYear W27627155472020 @default.
- W2762715547 countsByYear W27627155472021 @default.
- W2762715547 countsByYear W27627155472022 @default.
- W2762715547 countsByYear W27627155472023 @default.
- W2762715547 crossrefType "journal-article" @default.
- W2762715547 hasAuthorship W2762715547A5011996066 @default.
- W2762715547 hasAuthorship W2762715547A5056072904 @default.
- W2762715547 hasBestOaLocation W27627155471 @default.
- W2762715547 hasConcept C105795698 @default.
- W2762715547 hasConcept C111472728 @default.
- W2762715547 hasConcept C111919701 @default.
- W2762715547 hasConcept C119857082 @default.
- W2762715547 hasConcept C121332964 @default.
- W2762715547 hasConcept C138885662 @default.
- W2762715547 hasConcept C152877465 @default.
- W2762715547 hasConcept C154945302 @default.
- W2762715547 hasConcept C155386361 @default.
- W2762715547 hasConcept C168167062 @default.
- W2762715547 hasConcept C27438332 @default.
- W2762715547 hasConcept C2775924081 @default.
- W2762715547 hasConcept C2779530757 @default.
- W2762715547 hasConcept C33923547 @default.
- W2762715547 hasConcept C41008148 @default.
- W2762715547 hasConcept C74887250 @default.
- W2762715547 hasConcept C83546350 @default.
- W2762715547 hasConcept C97355855 @default.
- W2762715547 hasConcept C98045186 @default.
- W2762715547 hasConceptScore W2762715547C105795698 @default.
- W2762715547 hasConceptScore W2762715547C111472728 @default.
- W2762715547 hasConceptScore W2762715547C111919701 @default.
- W2762715547 hasConceptScore W2762715547C119857082 @default.
- W2762715547 hasConceptScore W2762715547C121332964 @default.
- W2762715547 hasConceptScore W2762715547C138885662 @default.
- W2762715547 hasConceptScore W2762715547C152877465 @default.
- W2762715547 hasConceptScore W2762715547C154945302 @default.
- W2762715547 hasConceptScore W2762715547C155386361 @default.
- W2762715547 hasConceptScore W2762715547C168167062 @default.
- W2762715547 hasConceptScore W2762715547C27438332 @default.
- W2762715547 hasConceptScore W2762715547C2775924081 @default.
- W2762715547 hasConceptScore W2762715547C2779530757 @default.
- W2762715547 hasConceptScore W2762715547C33923547 @default.
- W2762715547 hasConceptScore W2762715547C41008148 @default.
- W2762715547 hasConceptScore W2762715547C74887250 @default.
- W2762715547 hasConceptScore W2762715547C83546350 @default.
- W2762715547 hasConceptScore W2762715547C97355855 @default.
- W2762715547 hasConceptScore W2762715547C98045186 @default.
- W2762715547 hasLocation W27627155471 @default.
- W2762715547 hasLocation W27627155472 @default.
- W2762715547 hasOpenAccess W2762715547 @default.
- W2762715547 hasPrimaryLocation W27627155471 @default.
- W2762715547 hasRelatedWork W2031043266 @default.
- W2762715547 hasRelatedWork W2174367957 @default.
- W2762715547 hasRelatedWork W2348073155 @default.