Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762744391> ?p ?o ?g. }
- W2762744391 endingPage "353" @default.
- W2762744391 startingPage "347" @default.
- W2762744391 abstract "Background: Hemodynamic instability and cardiovascular events heavily affect the prognosis of traumatic brain injury. Physiological signals are monitored to detect these events. However, the signals are often riddled with faulty readings, which jeopardize the reliability of the clinical parameters obtained from the signals. A machine-learning model for the elimination of artifactual events shows promising results for improving signal quality. However, the actual impact of the improvements on the performance of the clinical parameters after the elimination of the artifacts is not well studied. Materials and Methods: The arterial blood pressure of 99 subjects with traumatic brain injury was continuously measured for 5 consecutive days, beginning on the day of admission. The machine-learning deep belief network was constructed to automatically identify and remove false incidences of hypotension, hypertension, bradycardia, tachycardia, and alterations in cerebral perfusion pressure (CPP). Results: The prevalences of hypotension and tachycardia were significantly reduced by 47.5% and 13.1%, respectively, after suppressing false incidents ( P =0.01). Hypotension was particularly effective at predicting outcome favorability and mortality after artifact elimination ( P =0.015 and 0.027, respectively). In addition, increased CPP was also statistically significant in predicting outcomes ( P =0.02). Conclusions: The prevalence of false incidents due to signal artifacts can be significantly reduced using machine-learning. Some clinical events, such as hypotension and alterations in CPP, gain particularly high predictive capacity for patient outcomes after artifacts are eliminated from physiological signals." @default.
- W2762744391 created "2017-10-20" @default.
- W2762744391 creator A5009302215 @default.
- W2762744391 creator A5015725441 @default.
- W2762744391 creator A5043417988 @default.
- W2762744391 creator A5060632929 @default.
- W2762744391 creator A5086027330 @default.
- W2762744391 date "2018-10-01" @default.
- W2762744391 modified "2023-10-17" @default.
- W2762744391 title "Hemodynamic Instability and Cardiovascular Events After Traumatic Brain Injury Predict Outcome After Artifact Removal With Deep Belief Network Analysis" @default.
- W2762744391 cites W1556488922 @default.
- W2762744391 cites W1969086552 @default.
- W2762744391 cites W1997122507 @default.
- W2762744391 cites W2003242435 @default.
- W2762744391 cites W2004487242 @default.
- W2762744391 cites W2008651241 @default.
- W2762744391 cites W2010339935 @default.
- W2762744391 cites W2024479929 @default.
- W2762744391 cites W2039531680 @default.
- W2762744391 cites W2046373373 @default.
- W2762744391 cites W2085706022 @default.
- W2762744391 cites W2092926517 @default.
- W2762744391 cites W2099299143 @default.
- W2762744391 cites W2103037096 @default.
- W2762744391 cites W2119235408 @default.
- W2762744391 cites W2125388816 @default.
- W2762744391 cites W2139210766 @default.
- W2762744391 cites W2147768505 @default.
- W2762744391 cites W2150900351 @default.
- W2762744391 cites W2152611882 @default.
- W2762744391 cites W2161687618 @default.
- W2762744391 cites W2162660365 @default.
- W2762744391 cites W2324458257 @default.
- W2762744391 cites W2343205238 @default.
- W2762744391 cites W2522738478 @default.
- W2762744391 cites W3102424066 @default.
- W2762744391 cites W4248309850 @default.
- W2762744391 doi "https://doi.org/10.1097/ana.0000000000000462" @default.
- W2762744391 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28991060" @default.
- W2762744391 hasPublicationYear "2018" @default.
- W2762744391 type Work @default.
- W2762744391 sameAs 2762744391 @default.
- W2762744391 citedByCount "9" @default.
- W2762744391 countsByYear W27627443912018 @default.
- W2762744391 countsByYear W27627443912019 @default.
- W2762744391 countsByYear W27627443912020 @default.
- W2762744391 countsByYear W27627443912021 @default.
- W2762744391 countsByYear W27627443912022 @default.
- W2762744391 crossrefType "journal-article" @default.
- W2762744391 hasAuthorship W2762744391A5009302215 @default.
- W2762744391 hasAuthorship W2762744391A5015725441 @default.
- W2762744391 hasAuthorship W2762744391A5043417988 @default.
- W2762744391 hasAuthorship W2762744391A5060632929 @default.
- W2762744391 hasAuthorship W2762744391A5086027330 @default.
- W2762744391 hasBestOaLocation W27627443912 @default.
- W2762744391 hasConcept C106131492 @default.
- W2762744391 hasConcept C116390426 @default.
- W2762744391 hasConcept C118552586 @default.
- W2762744391 hasConcept C126322002 @default.
- W2762744391 hasConcept C146957229 @default.
- W2762744391 hasConcept C154281038 @default.
- W2762744391 hasConcept C154945302 @default.
- W2762744391 hasConcept C164705383 @default.
- W2762744391 hasConcept C178853913 @default.
- W2762744391 hasConcept C2776452961 @default.
- W2762744391 hasConcept C2777495988 @default.
- W2762744391 hasConcept C2777953023 @default.
- W2762744391 hasConcept C2779010991 @default.
- W2762744391 hasConcept C2780283014 @default.
- W2762744391 hasConcept C2781017439 @default.
- W2762744391 hasConcept C31972630 @default.
- W2762744391 hasConcept C41008148 @default.
- W2762744391 hasConcept C42219234 @default.
- W2762744391 hasConcept C71924100 @default.
- W2762744391 hasConcept C84393581 @default.
- W2762744391 hasConceptScore W2762744391C106131492 @default.
- W2762744391 hasConceptScore W2762744391C116390426 @default.
- W2762744391 hasConceptScore W2762744391C118552586 @default.
- W2762744391 hasConceptScore W2762744391C126322002 @default.
- W2762744391 hasConceptScore W2762744391C146957229 @default.
- W2762744391 hasConceptScore W2762744391C154281038 @default.
- W2762744391 hasConceptScore W2762744391C154945302 @default.
- W2762744391 hasConceptScore W2762744391C164705383 @default.
- W2762744391 hasConceptScore W2762744391C178853913 @default.
- W2762744391 hasConceptScore W2762744391C2776452961 @default.
- W2762744391 hasConceptScore W2762744391C2777495988 @default.
- W2762744391 hasConceptScore W2762744391C2777953023 @default.
- W2762744391 hasConceptScore W2762744391C2779010991 @default.
- W2762744391 hasConceptScore W2762744391C2780283014 @default.
- W2762744391 hasConceptScore W2762744391C2781017439 @default.
- W2762744391 hasConceptScore W2762744391C31972630 @default.
- W2762744391 hasConceptScore W2762744391C41008148 @default.
- W2762744391 hasConceptScore W2762744391C42219234 @default.
- W2762744391 hasConceptScore W2762744391C71924100 @default.
- W2762744391 hasConceptScore W2762744391C84393581 @default.
- W2762744391 hasIssue "4" @default.
- W2762744391 hasLocation W27627443911 @default.
- W2762744391 hasLocation W27627443912 @default.