Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762848720> ?p ?o ?g. }
- W2762848720 abstract "Sufficient dimension reduction (SDR) provides a framework for reducing the predictor space dimension in regression problems. We consider SDR in the context of deterministic functions of several variables such as those arising in computer experiments. In this context, SDR serves as a methodology for uncovering ridge structure in functions, and two primary algorithms for SDR---sliced inverse regression (SIR) and sliced average variance estimation (SAVE)---approximate matrices of integrals using a sliced mapping of the response. We interpret this sliced approach as a Riemann sum approximation of the particular integrals arising in each algorithm. We employ well-known tools from numerical analysis---namely, multivariate tensor product Gauss-Christoffel quadrature and orthogonal polynomials---to produce new algorithms that improve upon the Riemann sum-based numerical integration in SIR and SAVE. We call the new algorithms Lanczos-Stieltjes inverse regression (LSIR) and Lanczos-Stieltjes average variance estimation (LSAVE) due to their connection with Stieltjes' method---and Lanczos' related discretization---for generating a sequence of polynomials that are orthogonal to a given measure. We show that the quadrature-based approach approximates the desired integrals, and we study the behavior of LSIR and LSAVE with three numerical examples. As expected in high order numerical integration, the quadrature-based LSIR and LSAVE exhibit exponential convergence in the integral approximations compared to the first order convergence of the classical SIR and SAVE. The disadvantage of LSIR and LSAVE is that the underlying tensor product quadrature suffers from the curse of dimensionality---that is, the number of quadrature nodes grows exponentially with the input space dimension. Therefore, the proposed approach is most appropriate for deterministic functions with fewer than ten independent inputs." @default.
- W2762848720 created "2017-10-20" @default.
- W2762848720 creator A5072780873 @default.
- W2762848720 creator A5085133267 @default.
- W2762848720 date "2017-10-03" @default.
- W2762848720 modified "2023-09-27" @default.
- W2762848720 title "Gauss-Christoffel quadrature for inverse regression: applications to computer experiments" @default.
- W2762848720 cites W1579063588 @default.
- W2762848720 cites W1603452536 @default.
- W2762848720 cites W1807984730 @default.
- W2762848720 cites W1971099220 @default.
- W2762848720 cites W1978894946 @default.
- W2762848720 cites W2018044188 @default.
- W2762848720 cites W2019970588 @default.
- W2762848720 cites W2020328455 @default.
- W2762848720 cites W2044771513 @default.
- W2762848720 cites W2049496090 @default.
- W2762848720 cites W2059879831 @default.
- W2762848720 cites W2068752849 @default.
- W2762848720 cites W2072403451 @default.
- W2762848720 cites W2086014844 @default.
- W2762848720 cites W2087717467 @default.
- W2762848720 cites W2099427332 @default.
- W2762848720 cites W2117686912 @default.
- W2762848720 cites W2144405862 @default.
- W2762848720 cites W2163490846 @default.
- W2762848720 cites W2168170318 @default.
- W2762848720 cites W2186391130 @default.
- W2762848720 cites W2314359380 @default.
- W2762848720 cites W253307310 @default.
- W2762848720 cites W2733600440 @default.
- W2762848720 cites W3038138814 @default.
- W2762848720 cites W603018635 @default.
- W2762848720 cites W612485192 @default.
- W2762848720 cites W649715400 @default.
- W2762848720 hasPublicationYear "2017" @default.
- W2762848720 type Work @default.
- W2762848720 sameAs 2762848720 @default.
- W2762848720 citedByCount "0" @default.
- W2762848720 crossrefType "posted-content" @default.
- W2762848720 hasAuthorship W2762848720A5072780873 @default.
- W2762848720 hasAuthorship W2762848720A5085133267 @default.
- W2762848720 hasConcept C11413529 @default.
- W2762848720 hasConcept C119256216 @default.
- W2762848720 hasConcept C119599485 @default.
- W2762848720 hasConcept C121332964 @default.
- W2762848720 hasConcept C127349201 @default.
- W2762848720 hasConcept C127413603 @default.
- W2762848720 hasConcept C134306372 @default.
- W2762848720 hasConcept C14103991 @default.
- W2762848720 hasConcept C158693339 @default.
- W2762848720 hasConcept C167196314 @default.
- W2762848720 hasConcept C172657837 @default.
- W2762848720 hasConcept C27016315 @default.
- W2762848720 hasConcept C28826006 @default.
- W2762848720 hasConcept C33923547 @default.
- W2762848720 hasConcept C48265008 @default.
- W2762848720 hasConcept C62520636 @default.
- W2762848720 hasConcept C62869609 @default.
- W2762848720 hasConceptScore W2762848720C11413529 @default.
- W2762848720 hasConceptScore W2762848720C119256216 @default.
- W2762848720 hasConceptScore W2762848720C119599485 @default.
- W2762848720 hasConceptScore W2762848720C121332964 @default.
- W2762848720 hasConceptScore W2762848720C127349201 @default.
- W2762848720 hasConceptScore W2762848720C127413603 @default.
- W2762848720 hasConceptScore W2762848720C134306372 @default.
- W2762848720 hasConceptScore W2762848720C14103991 @default.
- W2762848720 hasConceptScore W2762848720C158693339 @default.
- W2762848720 hasConceptScore W2762848720C167196314 @default.
- W2762848720 hasConceptScore W2762848720C172657837 @default.
- W2762848720 hasConceptScore W2762848720C27016315 @default.
- W2762848720 hasConceptScore W2762848720C28826006 @default.
- W2762848720 hasConceptScore W2762848720C33923547 @default.
- W2762848720 hasConceptScore W2762848720C48265008 @default.
- W2762848720 hasConceptScore W2762848720C62520636 @default.
- W2762848720 hasConceptScore W2762848720C62869609 @default.
- W2762848720 hasLocation W27628487201 @default.
- W2762848720 hasOpenAccess W2762848720 @default.
- W2762848720 hasPrimaryLocation W27628487201 @default.
- W2762848720 hasRelatedWork W1542458464 @default.
- W2762848720 hasRelatedWork W2084455837 @default.
- W2762848720 hasRelatedWork W2088993232 @default.
- W2762848720 hasRelatedWork W2173264618 @default.
- W2762848720 hasRelatedWork W2280506408 @default.
- W2762848720 hasRelatedWork W2340835927 @default.
- W2762848720 hasRelatedWork W2342907127 @default.
- W2762848720 hasRelatedWork W2402181420 @default.
- W2762848720 hasRelatedWork W2591264703 @default.
- W2762848720 hasRelatedWork W2742269066 @default.
- W2762848720 hasRelatedWork W2770711090 @default.
- W2762848720 hasRelatedWork W2891590611 @default.
- W2762848720 hasRelatedWork W2949155892 @default.
- W2762848720 hasRelatedWork W2962678232 @default.
- W2762848720 hasRelatedWork W3012484427 @default.
- W2762848720 hasRelatedWork W3172083746 @default.
- W2762848720 hasRelatedWork W3181244493 @default.
- W2762848720 hasRelatedWork W3189305857 @default.
- W2762848720 hasRelatedWork W53666111 @default.
- W2762848720 hasRelatedWork W2309977285 @default.
- W2762848720 isParatext "false" @default.