Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762903095> ?p ?o ?g. }
- W2762903095 endingPage "84" @default.
- W2762903095 startingPage "73" @default.
- W2762903095 abstract "At the same time that civil engineering structures are increasing in number, size and longevity, there is a conforming increasing preoccupation regarding the monitoring and maintenance of such structures. In this sense the demand for new reliable Structural Health Monitoring systems and damage detection techniques is high. A model-free damage detection approach based on Machine Learning is presented in this paper. The method performs on the collected feature measurements on a railway bridge, which for this study were gathered in a numerical experiment using a three dimensional finite element model. The first step of the approach consists in collecting the dynamic response of the structure, simulated during the passage of a train over the bridge, in both the healthy and damage states of the structure. The next step consists in the design and unsupervised training of Artificial Neural Networks that use as input accelerations and axle loads and compute a novelty index, called prediction error, based on a novelty detection approach. The distribution of the obtained prediction errors is statistically evaluated by means of a Gaussian Process and, after this process, damage indexes can be defined. Finally, the efficiency of the method is assessed in terms of Type I (false positive) and Type II (false negative) errors using Receiver Operating Characteristic curves. The promising results obtained in the case study demonstrate the capability of the presented method." @default.
- W2762903095 created "2017-10-20" @default.
- W2762903095 creator A5034791011 @default.
- W2762903095 creator A5045654386 @default.
- W2762903095 creator A5057881233 @default.
- W2762903095 creator A5074118576 @default.
- W2762903095 date "2017-10-13" @default.
- W2762903095 modified "2023-10-03" @default.
- W2762903095 title "A New Approach to Damage Detection in Bridges Using Machine Learning" @default.
- W2762903095 cites W1500974069 @default.
- W2762903095 cites W1511382581 @default.
- W2762903095 cites W2027566931 @default.
- W2762903095 cites W2083915015 @default.
- W2762903095 cites W2118398202 @default.
- W2762903095 cites W2158698691 @default.
- W2762903095 cites W2199377670 @default.
- W2762903095 cites W2289499874 @default.
- W2762903095 cites W2325800595 @default.
- W2762903095 cites W2346362231 @default.
- W2762903095 doi "https://doi.org/10.1007/978-3-319-67443-8_5" @default.
- W2762903095 hasPublicationYear "2017" @default.
- W2762903095 type Work @default.
- W2762903095 sameAs 2762903095 @default.
- W2762903095 citedByCount "15" @default.
- W2762903095 countsByYear W27629030952019 @default.
- W2762903095 countsByYear W27629030952020 @default.
- W2762903095 countsByYear W27629030952021 @default.
- W2762903095 countsByYear W27629030952022 @default.
- W2762903095 countsByYear W27629030952023 @default.
- W2762903095 crossrefType "book-chapter" @default.
- W2762903095 hasAuthorship W2762903095A5034791011 @default.
- W2762903095 hasAuthorship W2762903095A5045654386 @default.
- W2762903095 hasAuthorship W2762903095A5057881233 @default.
- W2762903095 hasAuthorship W2762903095A5074118576 @default.
- W2762903095 hasConcept C100776233 @default.
- W2762903095 hasConcept C111919701 @default.
- W2762903095 hasConcept C11413529 @default.
- W2762903095 hasConcept C119857082 @default.
- W2762903095 hasConcept C121332964 @default.
- W2762903095 hasConcept C126322002 @default.
- W2762903095 hasConcept C127413603 @default.
- W2762903095 hasConcept C129727815 @default.
- W2762903095 hasConcept C135628077 @default.
- W2762903095 hasConcept C138885662 @default.
- W2762903095 hasConcept C153180895 @default.
- W2762903095 hasConcept C154945302 @default.
- W2762903095 hasConcept C163716315 @default.
- W2762903095 hasConcept C27206212 @default.
- W2762903095 hasConcept C2776247918 @default.
- W2762903095 hasConcept C2776401178 @default.
- W2762903095 hasConcept C2778738651 @default.
- W2762903095 hasConcept C2778924833 @default.
- W2762903095 hasConcept C41008148 @default.
- W2762903095 hasConcept C41895202 @default.
- W2762903095 hasConcept C50644808 @default.
- W2762903095 hasConcept C62520636 @default.
- W2762903095 hasConcept C66938386 @default.
- W2762903095 hasConcept C71924100 @default.
- W2762903095 hasConcept C98045186 @default.
- W2762903095 hasConceptScore W2762903095C100776233 @default.
- W2762903095 hasConceptScore W2762903095C111919701 @default.
- W2762903095 hasConceptScore W2762903095C11413529 @default.
- W2762903095 hasConceptScore W2762903095C119857082 @default.
- W2762903095 hasConceptScore W2762903095C121332964 @default.
- W2762903095 hasConceptScore W2762903095C126322002 @default.
- W2762903095 hasConceptScore W2762903095C127413603 @default.
- W2762903095 hasConceptScore W2762903095C129727815 @default.
- W2762903095 hasConceptScore W2762903095C135628077 @default.
- W2762903095 hasConceptScore W2762903095C138885662 @default.
- W2762903095 hasConceptScore W2762903095C153180895 @default.
- W2762903095 hasConceptScore W2762903095C154945302 @default.
- W2762903095 hasConceptScore W2762903095C163716315 @default.
- W2762903095 hasConceptScore W2762903095C27206212 @default.
- W2762903095 hasConceptScore W2762903095C2776247918 @default.
- W2762903095 hasConceptScore W2762903095C2776401178 @default.
- W2762903095 hasConceptScore W2762903095C2778738651 @default.
- W2762903095 hasConceptScore W2762903095C2778924833 @default.
- W2762903095 hasConceptScore W2762903095C41008148 @default.
- W2762903095 hasConceptScore W2762903095C41895202 @default.
- W2762903095 hasConceptScore W2762903095C50644808 @default.
- W2762903095 hasConceptScore W2762903095C62520636 @default.
- W2762903095 hasConceptScore W2762903095C66938386 @default.
- W2762903095 hasConceptScore W2762903095C71924100 @default.
- W2762903095 hasConceptScore W2762903095C98045186 @default.
- W2762903095 hasLocation W27629030951 @default.
- W2762903095 hasOpenAccess W2762903095 @default.
- W2762903095 hasPrimaryLocation W27629030951 @default.
- W2762903095 hasRelatedWork W1979682850 @default.
- W2762903095 hasRelatedWork W2034678958 @default.
- W2762903095 hasRelatedWork W2093290782 @default.
- W2762903095 hasRelatedWork W2354725171 @default.
- W2762903095 hasRelatedWork W2362365886 @default.
- W2762903095 hasRelatedWork W2362478917 @default.
- W2762903095 hasRelatedWork W2367043156 @default.
- W2762903095 hasRelatedWork W2729269589 @default.
- W2762903095 hasRelatedWork W4316661205 @default.
- W2762903095 hasRelatedWork W749114475 @default.
- W2762903095 isParatext "false" @default.