Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762912046> ?p ?o ?g. }
- W2762912046 abstract "Nowadays the energy generation strategy of almost every nation around the world relies on a strong contribution from renewable energy sources. In certain countries the relevance taken by wind energy is particularly high within its national production share, mainly due to its large-scale wind flow patterns. This noted potentiality of wind energy has so far attracted public and private funds to support the development of advanced wind energy technologies. However, the proliferation of wind farms makes it challenging to achieve a proper electricity balance of the grid, a problem that becomes further involved due to the fluctuations of wind generation that occur at different time scales. Therefore, acquiring a predictive insight on the variability of this renewable energy source becomes essential in order to optimally inject the produced wind energy into the electricity grid. To this end the present work elaborates on a hybrid predictive model for wind power production forecasting based on meteorological data collected at different locations over the area where a wind farm is located. The proposed method hybridizes Extreme Learning Machines with a feature selection wrapper that models the discovery of the optimum subset of predictors as a metric-based search for the optimum path through a solution graph efficiently tackled via Ant Colony Optimization. Results obtained by our approach for two real wind farms in Zamora and Galicia (Spain) are presented and discussed, from which we conclude that the proposed hybrid model is able to efficiently reduce the number of input features and enhance the overall model performance." @default.
- W2762912046 created "2017-10-20" @default.
- W2762912046 creator A5017326471 @default.
- W2762912046 creator A5025314362 @default.
- W2762912046 creator A5031324468 @default.
- W2762912046 creator A5062588865 @default.
- W2762912046 creator A5079997651 @default.
- W2762912046 date "2017-10-05" @default.
- W2762912046 modified "2023-09-27" @default.
- W2762912046 title "Wind Power Production Forecasting Using Ant Colony Optimization and Extreme Learning Machines" @default.
- W2762912046 cites W1519238132 @default.
- W2762912046 cites W1705374184 @default.
- W2762912046 cites W1866429230 @default.
- W2762912046 cites W1966103698 @default.
- W2762912046 cites W1981441241 @default.
- W2762912046 cites W1984703120 @default.
- W2762912046 cites W1985727987 @default.
- W2762912046 cites W1992664296 @default.
- W2762912046 cites W1993041952 @default.
- W2762912046 cites W1995140642 @default.
- W2762912046 cites W2024692966 @default.
- W2762912046 cites W2028765696 @default.
- W2762912046 cites W2067201152 @default.
- W2762912046 cites W2079522653 @default.
- W2762912046 cites W2083620425 @default.
- W2762912046 cites W2088911425 @default.
- W2762912046 cites W2089758604 @default.
- W2762912046 cites W2111072639 @default.
- W2762912046 cites W2113238782 @default.
- W2762912046 cites W2158173327 @default.
- W2762912046 cites W2218112468 @default.
- W2762912046 cites W2469407437 @default.
- W2762912046 cites W2502399335 @default.
- W2762912046 cites W2547352166 @default.
- W2762912046 cites W4292083457 @default.
- W2762912046 doi "https://doi.org/10.1007/978-3-319-66379-1_16" @default.
- W2762912046 hasPublicationYear "2017" @default.
- W2762912046 type Work @default.
- W2762912046 sameAs 2762912046 @default.
- W2762912046 citedByCount "3" @default.
- W2762912046 countsByYear W27629120462020 @default.
- W2762912046 countsByYear W27629120462023 @default.
- W2762912046 crossrefType "book-chapter" @default.
- W2762912046 hasAuthorship W2762912046A5017326471 @default.
- W2762912046 hasAuthorship W2762912046A5025314362 @default.
- W2762912046 hasAuthorship W2762912046A5031324468 @default.
- W2762912046 hasAuthorship W2762912046A5062588865 @default.
- W2762912046 hasAuthorship W2762912046A5079997651 @default.
- W2762912046 hasConcept C119599485 @default.
- W2762912046 hasConcept C121332964 @default.
- W2762912046 hasConcept C126255220 @default.
- W2762912046 hasConcept C127413603 @default.
- W2762912046 hasConcept C154945302 @default.
- W2762912046 hasConcept C163258240 @default.
- W2762912046 hasConcept C187691185 @default.
- W2762912046 hasConcept C188573790 @default.
- W2762912046 hasConcept C2524010 @default.
- W2762912046 hasConcept C33923547 @default.
- W2762912046 hasConcept C40128228 @default.
- W2762912046 hasConcept C41008148 @default.
- W2762912046 hasConcept C423512 @default.
- W2762912046 hasConcept C62520636 @default.
- W2762912046 hasConcept C78600449 @default.
- W2762912046 hasConceptScore W2762912046C119599485 @default.
- W2762912046 hasConceptScore W2762912046C121332964 @default.
- W2762912046 hasConceptScore W2762912046C126255220 @default.
- W2762912046 hasConceptScore W2762912046C127413603 @default.
- W2762912046 hasConceptScore W2762912046C154945302 @default.
- W2762912046 hasConceptScore W2762912046C163258240 @default.
- W2762912046 hasConceptScore W2762912046C187691185 @default.
- W2762912046 hasConceptScore W2762912046C188573790 @default.
- W2762912046 hasConceptScore W2762912046C2524010 @default.
- W2762912046 hasConceptScore W2762912046C33923547 @default.
- W2762912046 hasConceptScore W2762912046C40128228 @default.
- W2762912046 hasConceptScore W2762912046C41008148 @default.
- W2762912046 hasConceptScore W2762912046C423512 @default.
- W2762912046 hasConceptScore W2762912046C62520636 @default.
- W2762912046 hasConceptScore W2762912046C78600449 @default.
- W2762912046 hasLocation W27629120461 @default.
- W2762912046 hasOpenAccess W2762912046 @default.
- W2762912046 hasPrimaryLocation W27629120461 @default.
- W2762912046 hasRelatedWork W1277457839 @default.
- W2762912046 hasRelatedWork W1531048706 @default.
- W2762912046 hasRelatedWork W2138445550 @default.
- W2762912046 hasRelatedWork W2525882202 @default.
- W2762912046 hasRelatedWork W2538556819 @default.
- W2762912046 hasRelatedWork W2560511071 @default.
- W2762912046 hasRelatedWork W2771792598 @default.
- W2762912046 hasRelatedWork W2808888064 @default.
- W2762912046 hasRelatedWork W2811163445 @default.
- W2762912046 hasRelatedWork W2904182762 @default.
- W2762912046 hasRelatedWork W2918679089 @default.
- W2762912046 hasRelatedWork W2947501527 @default.
- W2762912046 hasRelatedWork W2961056781 @default.
- W2762912046 hasRelatedWork W2967296256 @default.
- W2762912046 hasRelatedWork W2980867051 @default.
- W2762912046 hasRelatedWork W3031839705 @default.
- W2762912046 hasRelatedWork W3108988409 @default.
- W2762912046 hasRelatedWork W3122659825 @default.
- W2762912046 hasRelatedWork W3196166671 @default.