Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763268507> ?p ?o ?g. }
- W2763268507 abstract "Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts." @default.
- W2763268507 created "2017-10-20" @default.
- W2763268507 creator A5000212670 @default.
- W2763268507 creator A5018083532 @default.
- W2763268507 creator A5020686316 @default.
- W2763268507 creator A5026288023 @default.
- W2763268507 creator A5037083293 @default.
- W2763268507 creator A5049787441 @default.
- W2763268507 creator A5081917192 @default.
- W2763268507 date "2017-10-05" @default.
- W2763268507 modified "2023-10-15" @default.
- W2763268507 title "Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks" @default.
- W2763268507 cites W1972246553 @default.
- W2763268507 cites W1988376519 @default.
- W2763268507 cites W1997674733 @default.
- W2763268507 cites W2011288531 @default.
- W2763268507 cites W2030205386 @default.
- W2763268507 cites W2041833126 @default.
- W2763268507 cites W2062629314 @default.
- W2763268507 cites W2064733273 @default.
- W2763268507 cites W2101420429 @default.
- W2763268507 cites W2106954807 @default.
- W2763268507 cites W2127070446 @default.
- W2763268507 cites W2138190945 @default.
- W2763268507 cites W2157190392 @default.
- W2763268507 cites W2168372372 @default.
- W2763268507 cites W2180822344 @default.
- W2763268507 cites W2251970929 @default.
- W2763268507 cites W2614995223 @default.
- W2763268507 cites W3210839039 @default.
- W2763268507 doi "https://doi.org/10.3389/fncom.2017.00087" @default.
- W2763268507 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5633615" @default.
- W2763268507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29051730" @default.
- W2763268507 hasPublicationYear "2017" @default.
- W2763268507 type Work @default.
- W2763268507 sameAs 2763268507 @default.
- W2763268507 citedByCount "9" @default.
- W2763268507 countsByYear W27632685072018 @default.
- W2763268507 countsByYear W27632685072019 @default.
- W2763268507 countsByYear W27632685072021 @default.
- W2763268507 countsByYear W27632685072022 @default.
- W2763268507 countsByYear W27632685072023 @default.
- W2763268507 crossrefType "journal-article" @default.
- W2763268507 hasAuthorship W2763268507A5000212670 @default.
- W2763268507 hasAuthorship W2763268507A5018083532 @default.
- W2763268507 hasAuthorship W2763268507A5020686316 @default.
- W2763268507 hasAuthorship W2763268507A5026288023 @default.
- W2763268507 hasAuthorship W2763268507A5037083293 @default.
- W2763268507 hasAuthorship W2763268507A5049787441 @default.
- W2763268507 hasAuthorship W2763268507A5081917192 @default.
- W2763268507 hasBestOaLocation W27632685071 @default.
- W2763268507 hasConcept C114614502 @default.
- W2763268507 hasConcept C121332964 @default.
- W2763268507 hasConcept C132525143 @default.
- W2763268507 hasConcept C136764020 @default.
- W2763268507 hasConcept C154945302 @default.
- W2763268507 hasConcept C15744967 @default.
- W2763268507 hasConcept C169760540 @default.
- W2763268507 hasConcept C28826006 @default.
- W2763268507 hasConcept C3018011982 @default.
- W2763268507 hasConcept C32946077 @default.
- W2763268507 hasConcept C33923547 @default.
- W2763268507 hasConcept C34947359 @default.
- W2763268507 hasConcept C36299963 @default.
- W2763268507 hasConcept C41008148 @default.
- W2763268507 hasConcept C45715564 @default.
- W2763268507 hasConcept C62520636 @default.
- W2763268507 hasConcept C80444323 @default.
- W2763268507 hasConcept C88230418 @default.
- W2763268507 hasConceptScore W2763268507C114614502 @default.
- W2763268507 hasConceptScore W2763268507C121332964 @default.
- W2763268507 hasConceptScore W2763268507C132525143 @default.
- W2763268507 hasConceptScore W2763268507C136764020 @default.
- W2763268507 hasConceptScore W2763268507C154945302 @default.
- W2763268507 hasConceptScore W2763268507C15744967 @default.
- W2763268507 hasConceptScore W2763268507C169760540 @default.
- W2763268507 hasConceptScore W2763268507C28826006 @default.
- W2763268507 hasConceptScore W2763268507C3018011982 @default.
- W2763268507 hasConceptScore W2763268507C32946077 @default.
- W2763268507 hasConceptScore W2763268507C33923547 @default.
- W2763268507 hasConceptScore W2763268507C34947359 @default.
- W2763268507 hasConceptScore W2763268507C36299963 @default.
- W2763268507 hasConceptScore W2763268507C41008148 @default.
- W2763268507 hasConceptScore W2763268507C45715564 @default.
- W2763268507 hasConceptScore W2763268507C62520636 @default.
- W2763268507 hasConceptScore W2763268507C80444323 @default.
- W2763268507 hasConceptScore W2763268507C88230418 @default.
- W2763268507 hasFunder F4320338337 @default.
- W2763268507 hasLocation W27632685071 @default.
- W2763268507 hasLocation W27632685072 @default.
- W2763268507 hasLocation W27632685073 @default.
- W2763268507 hasLocation W27632685074 @default.
- W2763268507 hasLocation W27632685075 @default.
- W2763268507 hasOpenAccess W2763268507 @default.
- W2763268507 hasPrimaryLocation W27632685071 @default.
- W2763268507 hasRelatedWork W113124400 @default.
- W2763268507 hasRelatedWork W2156167331 @default.
- W2763268507 hasRelatedWork W2197091772 @default.
- W2763268507 hasRelatedWork W2375639001 @default.
- W2763268507 hasRelatedWork W2614995223 @default.