Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763362904> ?p ?o ?g. }
- W2763362904 endingPage "4383" @default.
- W2763362904 startingPage "4371" @default.
- W2763362904 abstract "Abstract Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only." @default.
- W2763362904 created "2017-10-20" @default.
- W2763362904 creator A5003233325 @default.
- W2763362904 creator A5005689378 @default.
- W2763362904 creator A5039666109 @default.
- W2763362904 creator A5067260374 @default.
- W2763362904 date "2017-11-06" @default.
- W2763362904 modified "2023-09-29" @default.
- W2763362904 title "Water level observations from unmanned aerial vehicles for improving estimates of surface water-groundwater interaction" @default.
- W2763362904 cites W1583769690 @default.
- W2763362904 cites W1588537656 @default.
- W2763362904 cites W1920448753 @default.
- W2763362904 cites W1971704462 @default.
- W2763362904 cites W1976255336 @default.
- W2763362904 cites W1979676333 @default.
- W2763362904 cites W1994508934 @default.
- W2763362904 cites W2004297607 @default.
- W2763362904 cites W2009632224 @default.
- W2763362904 cites W2024206358 @default.
- W2763362904 cites W2025720061 @default.
- W2763362904 cites W2033602192 @default.
- W2763362904 cites W2041168332 @default.
- W2763362904 cites W2047835502 @default.
- W2763362904 cites W2059217964 @default.
- W2763362904 cites W2065675922 @default.
- W2763362904 cites W2073241381 @default.
- W2763362904 cites W2073688329 @default.
- W2763362904 cites W2081059972 @default.
- W2763362904 cites W2090528440 @default.
- W2763362904 cites W2092795505 @default.
- W2763362904 cites W2110485661 @default.
- W2763362904 cites W2111527601 @default.
- W2763362904 cites W2115938559 @default.
- W2763362904 cites W2120225005 @default.
- W2763362904 cites W2127864697 @default.
- W2763362904 cites W2146495904 @default.
- W2763362904 cites W2166046157 @default.
- W2763362904 cites W2168164227 @default.
- W2763362904 cites W2173126837 @default.
- W2763362904 cites W2282261686 @default.
- W2763362904 cites W2296696718 @default.
- W2763362904 cites W2345075593 @default.
- W2763362904 cites W2591258063 @default.
- W2763362904 cites W776703823 @default.
- W2763362904 doi "https://doi.org/10.1002/hyp.11366" @default.
- W2763362904 hasPublicationYear "2017" @default.
- W2763362904 type Work @default.
- W2763362904 sameAs 2763362904 @default.
- W2763362904 citedByCount "18" @default.
- W2763362904 countsByYear W27633629042018 @default.
- W2763362904 countsByYear W27633629042019 @default.
- W2763362904 countsByYear W27633629042020 @default.
- W2763362904 countsByYear W27633629042021 @default.
- W2763362904 countsByYear W27633629042023 @default.
- W2763362904 crossrefType "journal-article" @default.
- W2763362904 hasAuthorship W2763362904A5003233325 @default.
- W2763362904 hasAuthorship W2763362904A5005689378 @default.
- W2763362904 hasAuthorship W2763362904A5039666109 @default.
- W2763362904 hasAuthorship W2763362904A5067260374 @default.
- W2763362904 hasBestOaLocation W27633629042 @default.
- W2763362904 hasConcept C105795698 @default.
- W2763362904 hasConcept C106131492 @default.
- W2763362904 hasConcept C119666444 @default.
- W2763362904 hasConcept C121332964 @default.
- W2763362904 hasConcept C127313418 @default.
- W2763362904 hasConcept C1284942 @default.
- W2763362904 hasConcept C131227075 @default.
- W2763362904 hasConcept C140779682 @default.
- W2763362904 hasConcept C165838908 @default.
- W2763362904 hasConcept C176650113 @default.
- W2763362904 hasConcept C187320778 @default.
- W2763362904 hasConcept C205649164 @default.
- W2763362904 hasConcept C31972630 @default.
- W2763362904 hasConcept C33923547 @default.
- W2763362904 hasConcept C39432304 @default.
- W2763362904 hasConcept C41008148 @default.
- W2763362904 hasConcept C58640448 @default.
- W2763362904 hasConcept C62520636 @default.
- W2763362904 hasConcept C62649853 @default.
- W2763362904 hasConcept C75622301 @default.
- W2763362904 hasConcept C76177295 @default.
- W2763362904 hasConcept C76886044 @default.
- W2763362904 hasConcept C8625798 @default.
- W2763362904 hasConcept C87717796 @default.
- W2763362904 hasConceptScore W2763362904C105795698 @default.
- W2763362904 hasConceptScore W2763362904C106131492 @default.
- W2763362904 hasConceptScore W2763362904C119666444 @default.
- W2763362904 hasConceptScore W2763362904C121332964 @default.
- W2763362904 hasConceptScore W2763362904C127313418 @default.
- W2763362904 hasConceptScore W2763362904C1284942 @default.
- W2763362904 hasConceptScore W2763362904C131227075 @default.
- W2763362904 hasConceptScore W2763362904C140779682 @default.
- W2763362904 hasConceptScore W2763362904C165838908 @default.
- W2763362904 hasConceptScore W2763362904C176650113 @default.
- W2763362904 hasConceptScore W2763362904C187320778 @default.
- W2763362904 hasConceptScore W2763362904C205649164 @default.
- W2763362904 hasConceptScore W2763362904C31972630 @default.
- W2763362904 hasConceptScore W2763362904C33923547 @default.