Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763420753> ?p ?o ?g. }
- W2763420753 endingPage "634" @default.
- W2763420753 startingPage "625" @default.
- W2763420753 abstract "Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes.In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input.The R software is available at https://github.com/angy89/RobustSparseCorrelation.aserra@unisa.it or robtag@unisa.it.Supplementary data are available at Bioinformatics online." @default.
- W2763420753 created "2017-10-20" @default.
- W2763420753 creator A5025810407 @default.
- W2763420753 creator A5030668200 @default.
- W2763420753 creator A5041632230 @default.
- W2763420753 creator A5055869179 @default.
- W2763420753 date "2017-10-12" @default.
- W2763420753 modified "2023-09-29" @default.
- W2763420753 title "Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data" @default.
- W2763420753 cites W132711133 @default.
- W2763420753 cites W1571301392 @default.
- W2763420753 cites W1771164467 @default.
- W2763420753 cites W1851422093 @default.
- W2763420753 cites W1937618727 @default.
- W2763420753 cites W1959730594 @default.
- W2763420753 cites W1981638497 @default.
- W2763420753 cites W1985514943 @default.
- W2763420753 cites W1989638282 @default.
- W2763420753 cites W1989727964 @default.
- W2763420753 cites W2000495354 @default.
- W2763420753 cites W2003898356 @default.
- W2763420753 cites W2004088708 @default.
- W2763420753 cites W2028080004 @default.
- W2763420753 cites W2044600950 @default.
- W2763420753 cites W2057535756 @default.
- W2763420753 cites W2060705109 @default.
- W2763420753 cites W2062125287 @default.
- W2763420753 cites W2069436548 @default.
- W2763420753 cites W2072789685 @default.
- W2763420753 cites W2079976213 @default.
- W2763420753 cites W2081746825 @default.
- W2763420753 cites W2091560152 @default.
- W2763420753 cites W2100668965 @default.
- W2763420753 cites W2110544411 @default.
- W2763420753 cites W2130618490 @default.
- W2763420753 cites W2132555912 @default.
- W2763420753 cites W2133487567 @default.
- W2763420753 cites W2139209399 @default.
- W2763420753 cites W2141012957 @default.
- W2763420753 cites W2167098291 @default.
- W2763420753 cites W2479782352 @default.
- W2763420753 cites W3099289621 @default.
- W2763420753 cites W3099609308 @default.
- W2763420753 cites W3106319742 @default.
- W2763420753 cites W3125435015 @default.
- W2763420753 doi "https://doi.org/10.1093/bioinformatics/btx642" @default.
- W2763420753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29040390" @default.
- W2763420753 hasPublicationYear "2017" @default.
- W2763420753 type Work @default.
- W2763420753 sameAs 2763420753 @default.
- W2763420753 citedByCount "18" @default.
- W2763420753 countsByYear W27634207532018 @default.
- W2763420753 countsByYear W27634207532020 @default.
- W2763420753 countsByYear W27634207532021 @default.
- W2763420753 countsByYear W27634207532022 @default.
- W2763420753 countsByYear W27634207532023 @default.
- W2763420753 crossrefType "journal-article" @default.
- W2763420753 hasAuthorship W2763420753A5025810407 @default.
- W2763420753 hasAuthorship W2763420753A5030668200 @default.
- W2763420753 hasAuthorship W2763420753A5041632230 @default.
- W2763420753 hasAuthorship W2763420753A5055869179 @default.
- W2763420753 hasConcept C105795698 @default.
- W2763420753 hasConcept C111030470 @default.
- W2763420753 hasConcept C11413529 @default.
- W2763420753 hasConcept C117220453 @default.
- W2763420753 hasConcept C119857082 @default.
- W2763420753 hasConcept C124101348 @default.
- W2763420753 hasConcept C153180895 @default.
- W2763420753 hasConcept C154945302 @default.
- W2763420753 hasConcept C178650346 @default.
- W2763420753 hasConcept C180877172 @default.
- W2763420753 hasConcept C185142706 @default.
- W2763420753 hasConcept C185429906 @default.
- W2763420753 hasConcept C2524010 @default.
- W2763420753 hasConcept C27438332 @default.
- W2763420753 hasConcept C33923547 @default.
- W2763420753 hasConcept C41008148 @default.
- W2763420753 hasConcept C70518039 @default.
- W2763420753 hasConcept C73555534 @default.
- W2763420753 hasConcept C79337645 @default.
- W2763420753 hasConcept C97256817 @default.
- W2763420753 hasConceptScore W2763420753C105795698 @default.
- W2763420753 hasConceptScore W2763420753C111030470 @default.
- W2763420753 hasConceptScore W2763420753C11413529 @default.
- W2763420753 hasConceptScore W2763420753C117220453 @default.
- W2763420753 hasConceptScore W2763420753C119857082 @default.
- W2763420753 hasConceptScore W2763420753C124101348 @default.
- W2763420753 hasConceptScore W2763420753C153180895 @default.
- W2763420753 hasConceptScore W2763420753C154945302 @default.
- W2763420753 hasConceptScore W2763420753C178650346 @default.
- W2763420753 hasConceptScore W2763420753C180877172 @default.
- W2763420753 hasConceptScore W2763420753C185142706 @default.
- W2763420753 hasConceptScore W2763420753C185429906 @default.
- W2763420753 hasConceptScore W2763420753C2524010 @default.
- W2763420753 hasConceptScore W2763420753C27438332 @default.
- W2763420753 hasConceptScore W2763420753C33923547 @default.
- W2763420753 hasConceptScore W2763420753C41008148 @default.
- W2763420753 hasConceptScore W2763420753C70518039 @default.