Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763440196> ?p ?o ?g. }
- W2763440196 endingPage "11967" @default.
- W2763440196 startingPage "11956" @default.
- W2763440196 abstract "Microsecond simulations have been performed to investigate CH4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH4 hydrate formation. The graphite surface adsorbs CH4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH4/water homogeneous solution systems are also simulated. CH4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH4 hydrate formation between silica and graphite surfaces." @default.
- W2763440196 created "2017-10-20" @default.
- W2763440196 creator A5002752807 @default.
- W2763440196 creator A5037373363 @default.
- W2763440196 creator A5072476367 @default.
- W2763440196 date "2017-10-19" @default.
- W2763440196 modified "2023-09-26" @default.
- W2763440196 title "CH<sub>4</sub> Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations" @default.
- W2763440196 cites W1087140505 @default.
- W2763440196 cites W1527964677 @default.
- W2763440196 cites W1966078827 @default.
- W2763440196 cites W1971536205 @default.
- W2763440196 cites W1972391295 @default.
- W2763440196 cites W1976329114 @default.
- W2763440196 cites W1981123091 @default.
- W2763440196 cites W1982956370 @default.
- W2763440196 cites W1985809260 @default.
- W2763440196 cites W1986019761 @default.
- W2763440196 cites W2005245888 @default.
- W2763440196 cites W2013536899 @default.
- W2763440196 cites W2015293317 @default.
- W2763440196 cites W2018302267 @default.
- W2763440196 cites W2020467717 @default.
- W2763440196 cites W2021036063 @default.
- W2763440196 cites W2021794821 @default.
- W2763440196 cites W2026923968 @default.
- W2763440196 cites W2027408247 @default.
- W2763440196 cites W2031107710 @default.
- W2763440196 cites W2033879426 @default.
- W2763440196 cites W2035250039 @default.
- W2763440196 cites W2040259985 @default.
- W2763440196 cites W2040527150 @default.
- W2763440196 cites W2042831386 @default.
- W2763440196 cites W2045132777 @default.
- W2763440196 cites W2045721049 @default.
- W2763440196 cites W2046313186 @default.
- W2763440196 cites W2049414825 @default.
- W2763440196 cites W2055763179 @default.
- W2763440196 cites W2067174909 @default.
- W2763440196 cites W2071673171 @default.
- W2763440196 cites W2074117796 @default.
- W2763440196 cites W2075828573 @default.
- W2763440196 cites W2075897231 @default.
- W2763440196 cites W2077327955 @default.
- W2763440196 cites W2084076557 @default.
- W2763440196 cites W2084377144 @default.
- W2763440196 cites W2092204065 @default.
- W2763440196 cites W2105730493 @default.
- W2763440196 cites W2108350286 @default.
- W2763440196 cites W2115779567 @default.
- W2763440196 cites W2129684016 @default.
- W2763440196 cites W2167382751 @default.
- W2763440196 cites W2236279901 @default.
- W2763440196 cites W2302465550 @default.
- W2763440196 cites W2312303066 @default.
- W2763440196 cites W2312659616 @default.
- W2763440196 cites W2312861125 @default.
- W2763440196 cites W2315132671 @default.
- W2763440196 cites W2318530645 @default.
- W2763440196 cites W2318823200 @default.
- W2763440196 cites W2319469731 @default.
- W2763440196 cites W2322815765 @default.
- W2763440196 cites W2323589486 @default.
- W2763440196 cites W2324120681 @default.
- W2763440196 cites W2324627854 @default.
- W2763440196 cites W2325417080 @default.
- W2763440196 cites W2327383586 @default.
- W2763440196 cites W2345496129 @default.
- W2763440196 cites W2346649286 @default.
- W2763440196 cites W2403412395 @default.
- W2763440196 cites W2462027331 @default.
- W2763440196 cites W2508608097 @default.
- W2763440196 cites W2548765767 @default.
- W2763440196 cites W2559163320 @default.
- W2763440196 cites W2581340384 @default.
- W2763440196 cites W2583030353 @default.
- W2763440196 cites W2608054079 @default.
- W2763440196 cites W2746426676 @default.
- W2763440196 cites W3129920218 @default.
- W2763440196 doi "https://doi.org/10.1021/acs.langmuir.7b02711" @default.
- W2763440196 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28991480" @default.
- W2763440196 hasPublicationYear "2017" @default.
- W2763440196 type Work @default.
- W2763440196 sameAs 2763440196 @default.
- W2763440196 citedByCount "72" @default.
- W2763440196 countsByYear W27634401962017 @default.
- W2763440196 countsByYear W27634401962018 @default.
- W2763440196 countsByYear W27634401962019 @default.
- W2763440196 countsByYear W27634401962020 @default.
- W2763440196 countsByYear W27634401962021 @default.
- W2763440196 countsByYear W27634401962022 @default.
- W2763440196 countsByYear W27634401962023 @default.
- W2763440196 crossrefType "journal-article" @default.
- W2763440196 hasAuthorship W2763440196A5002752807 @default.
- W2763440196 hasAuthorship W2763440196A5037373363 @default.
- W2763440196 hasAuthorship W2763440196A5072476367 @default.
- W2763440196 hasConcept C100402318 @default.
- W2763440196 hasConcept C112887158 @default.