Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763455760> ?p ?o ?g. }
- W2763455760 endingPage "802" @default.
- W2763455760 startingPage "793" @default.
- W2763455760 abstract "Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous methods applying TLS to vegetation inventory. Improving application of TLS to studies of shrub-steppe ecosystems will serve immediate management needs by enhancing vegetation inventories, environmental modeling studies, and the ability to train broader datasets collected from air and space." @default.
- W2763455760 created "2017-10-20" @default.
- W2763455760 creator A5000646572 @default.
- W2763455760 creator A5010694911 @default.
- W2763455760 creator A5013535676 @default.
- W2763455760 creator A5022381670 @default.
- W2763455760 creator A5039697369 @default.
- W2763455760 creator A5042058779 @default.
- W2763455760 creator A5062264917 @default.
- W2763455760 creator A5079796892 @default.
- W2763455760 date "2018-01-01" @default.
- W2763455760 modified "2023-10-17" @default.
- W2763455760 title "Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning" @default.
- W2763455760 cites W1819141188 @default.
- W2763455760 cites W1889270201 @default.
- W2763455760 cites W1946800400 @default.
- W2763455760 cites W1967182671 @default.
- W2763455760 cites W1969647288 @default.
- W2763455760 cites W1973857820 @default.
- W2763455760 cites W1976211889 @default.
- W2763455760 cites W1977030628 @default.
- W2763455760 cites W1977923756 @default.
- W2763455760 cites W1980375943 @default.
- W2763455760 cites W1991064179 @default.
- W2763455760 cites W1998492031 @default.
- W2763455760 cites W2005841252 @default.
- W2763455760 cites W2016929002 @default.
- W2763455760 cites W2057196936 @default.
- W2763455760 cites W2057943581 @default.
- W2763455760 cites W2062682676 @default.
- W2763455760 cites W2084341220 @default.
- W2763455760 cites W2088037520 @default.
- W2763455760 cites W2088783667 @default.
- W2763455760 cites W2102901125 @default.
- W2763455760 cites W2115322030 @default.
- W2763455760 cites W2116952004 @default.
- W2763455760 cites W2117456634 @default.
- W2763455760 cites W2126544904 @default.
- W2763455760 cites W2127719703 @default.
- W2763455760 cites W2134315730 @default.
- W2763455760 cites W2136245122 @default.
- W2763455760 cites W2140041315 @default.
- W2763455760 cites W2140310494 @default.
- W2763455760 cites W2142517156 @default.
- W2763455760 cites W2143659897 @default.
- W2763455760 cites W2155171932 @default.
- W2763455760 cites W2167324796 @default.
- W2763455760 cites W2170049772 @default.
- W2763455760 cites W2292481897 @default.
- W2763455760 cites W2428724917 @default.
- W2763455760 cites W2492422582 @default.
- W2763455760 cites W2545095470 @default.
- W2763455760 cites W2588862428 @default.
- W2763455760 cites W2607056896 @default.
- W2763455760 cites W2612949972 @default.
- W2763455760 cites W2617295820 @default.
- W2763455760 cites W2751418581 @default.
- W2763455760 cites W2911964244 @default.
- W2763455760 cites W800775703 @default.
- W2763455760 doi "https://doi.org/10.1016/j.ecolind.2017.09.034" @default.
- W2763455760 hasPublicationYear "2018" @default.
- W2763455760 type Work @default.
- W2763455760 sameAs 2763455760 @default.
- W2763455760 citedByCount "68" @default.
- W2763455760 countsByYear W27634557602017 @default.
- W2763455760 countsByYear W27634557602018 @default.
- W2763455760 countsByYear W27634557602019 @default.
- W2763455760 countsByYear W27634557602020 @default.
- W2763455760 countsByYear W27634557602021 @default.
- W2763455760 countsByYear W27634557602022 @default.
- W2763455760 countsByYear W27634557602023 @default.
- W2763455760 crossrefType "journal-article" @default.
- W2763455760 hasAuthorship W2763455760A5000646572 @default.
- W2763455760 hasAuthorship W2763455760A5010694911 @default.
- W2763455760 hasAuthorship W2763455760A5013535676 @default.
- W2763455760 hasAuthorship W2763455760A5022381670 @default.
- W2763455760 hasAuthorship W2763455760A5039697369 @default.
- W2763455760 hasAuthorship W2763455760A5042058779 @default.
- W2763455760 hasAuthorship W2763455760A5062264917 @default.
- W2763455760 hasAuthorship W2763455760A5079796892 @default.
- W2763455760 hasBestOaLocation W27634557601 @default.
- W2763455760 hasConcept C101000010 @default.
- W2763455760 hasConcept C105795698 @default.
- W2763455760 hasConcept C110872660 @default.
- W2763455760 hasConcept C115540264 @default.
- W2763455760 hasConcept C119857082 @default.
- W2763455760 hasConcept C139945424 @default.
- W2763455760 hasConcept C142724271 @default.
- W2763455760 hasConcept C150436541 @default.
- W2763455760 hasConcept C169258074 @default.
- W2763455760 hasConcept C18903297 @default.
- W2763455760 hasConcept C205649164 @default.
- W2763455760 hasConcept C24461792 @default.
- W2763455760 hasConcept C2775835988 @default.
- W2763455760 hasConcept C2776133958 @default.
- W2763455760 hasConcept C2778091200 @default.
- W2763455760 hasConcept C33923547 @default.
- W2763455760 hasConcept C39432304 @default.