Matches in SemOpenAlex for { <https://semopenalex.org/work/W276361255> ?p ?o ?g. }
- W276361255 abstract "This project addresses three closely related and similarly complex questions: First, using currently available simulation software, what methods might be appropriate for comparing slabintegrated radiant cooling to more conventional alternatives, such that the results are sufficiently fair and comprehensive to support system selection and design? Second, what is the relative performance of representative system configurations across a set of climates that test presumed strengths and limitations? Third, what useful conclusions can be drawn from such comparisons to inform the selection, application, design, and control of hydronic radiant cooling? The particular approach taken to answering these questions is rooted in the contention that useful results must effectively capture five essential aspects of slab-integrated hydronic radiant cooling: a) radiant heat transfer between surfaces; b) the effects of thermal capacity, lag, and decrement in the chilled slab; c) the limitations of evaporative cooling water sources; d) the potential of various control strategies for maintaining thermal comfort while minimizing energy consumption and peak loads; and e) the challenges and benefits of integrating the operation and control of hydronic and airside space conditioning systems. This report describes whole-building simulations of slab-integrated hydronic radiant cooling with mechanical ventilation, plus a more conventional all-air cooling system as a point of reference. Simulations are performed using Virtual Environment (VE)—an interconnected set of building performance-modeling tools from Integrated Environmental Solutions (IES). Methods are described for the modeling of hydronic radiant cooling slabs. Among these, THERM, a simple two-dimensional finite-element heat transfer tool from Lawrence Berkeley National Laboratory, is used for determining properties of the heat transfer path between the hydronic circuits and cooling surfaces. Attention is also given to modeling limitations of evaporative cooling as a supply water source for the radiant system and waterside economizer for the all-air baseline system. In preparing the models, emphasis was placed on achieving similar degrees of equipment and controls optimization for both systems using methods that could be replicated in the context of practical design processes. Cooling-season performance is evaluated in terms of system dynamics, thermal comfort, peak loads, and energy consumption for a prototypical office building in Denver, Sacramento, Los Angeles, and San Francisco. The Denver climate was used to optimize system dynamics and performance for minimum energy consumption and peak power. Sacramento—the hottest of the four—was the focus for optimizing and evaluating thermal performance with aggressive hydronic slab nighttime precooling. For the San Francisco climate, added emphasis was placed on optimizing the economizer controls and performance for the all-air baseline system. In all cases, equipment, airflow, and other key parameters were evaluated and re-sized accordingly. The slab-integrated hydronic radiant cooling is augmented by a dedicated outside air system (DOAS) for conditioning of ventilation air. The hydronic cooling and DOAS utilize only indirect evaporative cooling sources. The supply water source for the hydronic slabs and cooling coils is a closed-circuit cooling tower. The DOAS also incorporates a heat exchanger for sensible energy recovery and indirect-evaporative cooling of ventilation air via a spray chamber in the exhaust air stream. The reference baseline is a modern variable-air-volume system with an efficient watercooled chiller and fully integrated control resets for supply air temperature and airsideeconomizer operation. A waterside economizer or waterside “free cooling” (WSFC)—essentially the same cooling water source as is used for the hydronic radiant system—and nighttime precooling cycle were modeled as an additional scenario for the baseline system. The DOAS and VAV system use identical high-efficiency fans and motors (differing only in size). Simulation results (Figures 1–4) suggest strong energy-saving potential for radiant cooling systems in both Colorado and California climates. In Denver (Figure 1), the simulated radiant cooling plus dedicated outside air system (Radiant+DOAS) with precooling uses an estimated 71% less energy than the standard VAV baseline system and 62% less than the same VAV system using waterside free cooling and a nighttime precooling control strategy. This comparison includes heating for cool mornings, which must be coordinated with the nighttime slab precooling strategy. In Sacramento (Figure 2), the Radiant+DOAS uses an estimated 59% less energy relative to the baseline VAV system and 56% less than the VAV with waterside free cooling, regardless of the inclusion of precooling controls. For this hot but relatively dry climate, the added fan energy for precooling with the all-air VAV system, given its capacity for WSFC is sized for chiller heat rejection, offsets the savings from reduced daytime chiller operation. In Los Angeles (Figure 3), where daytime temperature are more moderate and nighttime temperatures tend not to dip quite as low, precooling—in this case used only for the Radiant+DOAS—confers a lesser net benefit. For San Francisco (Figure 4), where cooling loads are reduced and airside “free cooling” is readily available through economizer operation (which still requires the use of fans), total energy for both systems is considerably lower. However, the effectiveness of waterside free cooling in this climate contributes to even greater reduction of energy consumption for the otherwise already very efficient hydronic radiant system." @default.
- W276361255 created "2016-06-24" @default.
- W276361255 creator A5079081158 @default.
- W276361255 date "2008-05-01" @default.
- W276361255 modified "2023-09-27" @default.
- W276361255 title "Simulation of radiant cooling performance with evaporative cooling sources" @default.
- W276361255 cites W1485125531 @default.
- W276361255 cites W155138201 @default.
- W276361255 cites W162687794 @default.
- W276361255 cites W1967303650 @default.
- W276361255 cites W1999228850 @default.
- W276361255 cites W1999687991 @default.
- W276361255 cites W2021434432 @default.
- W276361255 cites W2042514896 @default.
- W276361255 cites W2069463703 @default.
- W276361255 cites W2070464181 @default.
- W276361255 cites W2109929183 @default.
- W276361255 cites W2128120029 @default.
- W276361255 cites W2154094670 @default.
- W276361255 cites W2159280601 @default.
- W276361255 cites W2169572214 @default.
- W276361255 cites W2181424273 @default.
- W276361255 cites W2183474322 @default.
- W276361255 cites W2189241396 @default.
- W276361255 cites W2286417713 @default.
- W276361255 cites W2325186191 @default.
- W276361255 cites W2406840542 @default.
- W276361255 cites W2548265172 @default.
- W276361255 cites W2781207467 @default.
- W276361255 cites W629757359 @default.
- W276361255 cites W2149478966 @default.
- W276361255 hasPublicationYear "2008" @default.
- W276361255 type Work @default.
- W276361255 sameAs 276361255 @default.
- W276361255 citedByCount "3" @default.
- W276361255 countsByYear W2763612552012 @default.
- W276361255 countsByYear W2763612552013 @default.
- W276361255 crossrefType "journal-article" @default.
- W276361255 hasAuthorship W276361255A5079081158 @default.
- W276361255 hasConcept C103742991 @default.
- W276361255 hasConcept C113740112 @default.
- W276361255 hasConcept C119599485 @default.
- W276361255 hasConcept C121332964 @default.
- W276361255 hasConcept C123516432 @default.
- W276361255 hasConcept C127413603 @default.
- W276361255 hasConcept C133913538 @default.
- W276361255 hasConcept C153294291 @default.
- W276361255 hasConcept C159985019 @default.
- W276361255 hasConcept C173991790 @default.
- W276361255 hasConcept C192562407 @default.
- W276361255 hasConcept C2775838644 @default.
- W276361255 hasConcept C2776409380 @default.
- W276361255 hasConcept C2777087718 @default.
- W276361255 hasConcept C2780165032 @default.
- W276361255 hasConcept C2982928256 @default.
- W276361255 hasConcept C39432304 @default.
- W276361255 hasConcept C41008148 @default.
- W276361255 hasConcept C44154836 @default.
- W276361255 hasConcept C50517652 @default.
- W276361255 hasConcept C57879066 @default.
- W276361255 hasConcept C66938386 @default.
- W276361255 hasConcept C7694927 @default.
- W276361255 hasConcept C78519656 @default.
- W276361255 hasConcept C79795727 @default.
- W276361255 hasConceptScore W276361255C103742991 @default.
- W276361255 hasConceptScore W276361255C113740112 @default.
- W276361255 hasConceptScore W276361255C119599485 @default.
- W276361255 hasConceptScore W276361255C121332964 @default.
- W276361255 hasConceptScore W276361255C123516432 @default.
- W276361255 hasConceptScore W276361255C127413603 @default.
- W276361255 hasConceptScore W276361255C133913538 @default.
- W276361255 hasConceptScore W276361255C153294291 @default.
- W276361255 hasConceptScore W276361255C159985019 @default.
- W276361255 hasConceptScore W276361255C173991790 @default.
- W276361255 hasConceptScore W276361255C192562407 @default.
- W276361255 hasConceptScore W276361255C2775838644 @default.
- W276361255 hasConceptScore W276361255C2776409380 @default.
- W276361255 hasConceptScore W276361255C2777087718 @default.
- W276361255 hasConceptScore W276361255C2780165032 @default.
- W276361255 hasConceptScore W276361255C2982928256 @default.
- W276361255 hasConceptScore W276361255C39432304 @default.
- W276361255 hasConceptScore W276361255C41008148 @default.
- W276361255 hasConceptScore W276361255C44154836 @default.
- W276361255 hasConceptScore W276361255C50517652 @default.
- W276361255 hasConceptScore W276361255C57879066 @default.
- W276361255 hasConceptScore W276361255C66938386 @default.
- W276361255 hasConceptScore W276361255C7694927 @default.
- W276361255 hasConceptScore W276361255C78519656 @default.
- W276361255 hasConceptScore W276361255C79795727 @default.
- W276361255 hasLocation W2763612551 @default.
- W276361255 hasOpenAccess W276361255 @default.
- W276361255 hasPrimaryLocation W2763612551 @default.
- W276361255 hasRelatedWork W1508478564 @default.
- W276361255 hasRelatedWork W2002235912 @default.
- W276361255 hasRelatedWork W2005418826 @default.
- W276361255 hasRelatedWork W2029802913 @default.
- W276361255 hasRelatedWork W2033763804 @default.
- W276361255 hasRelatedWork W2036483967 @default.
- W276361255 hasRelatedWork W204781019 @default.
- W276361255 hasRelatedWork W2074656965 @default.