Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763775926> ?p ?o ?g. }
- W2763775926 endingPage "2948" @default.
- W2763775926 startingPage "2929" @default.
- W2763775926 abstract "Abstract. Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., “duff”) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg−1), acetic acid (2.41 g kg−1), nitrous acid (HONO, 0.61 g kg−1), and other trace gases such as glycolaldehyde (0.90 g kg−1) and formic acid (0.36 g kg−1) are significant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg−1, an SSA of ∼ 0.91, and an AAE of ∼ 3.50, with the latter implying that about 86 % of the aerosol absorption at 401 nm is due to BrC." @default.
- W2763775926 created "2017-10-20" @default.
- W2763775926 creator A5005051998 @default.
- W2763775926 creator A5007063168 @default.
- W2763775926 creator A5010313313 @default.
- W2763775926 creator A5035061794 @default.
- W2763775926 creator A5044443947 @default.
- W2763775926 creator A5064877913 @default.
- W2763775926 creator A5069904746 @default.
- W2763775926 date "2018-03-01" @default.
- W2763775926 modified "2023-10-18" @default.
- W2763775926 title "Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX" @default.
- W2763775926 cites W1756610503 @default.
- W2763775926 cites W1859320757 @default.
- W2763775926 cites W1907369419 @default.
- W2763775926 cites W1946205625 @default.
- W2763775926 cites W1949462709 @default.
- W2763775926 cites W1964319918 @default.
- W2763775926 cites W1973933637 @default.
- W2763775926 cites W1977945389 @default.
- W2763775926 cites W1980087779 @default.
- W2763775926 cites W1988060312 @default.
- W2763775926 cites W1994787914 @default.
- W2763775926 cites W2002020305 @default.
- W2763775926 cites W2014716151 @default.
- W2763775926 cites W2026138868 @default.
- W2763775926 cites W2028018078 @default.
- W2763775926 cites W2039020884 @default.
- W2763775926 cites W2069595208 @default.
- W2763775926 cites W2069969287 @default.
- W2763775926 cites W2071706389 @default.
- W2763775926 cites W2076573355 @default.
- W2763775926 cites W2082989093 @default.
- W2763775926 cites W2084693817 @default.
- W2763775926 cites W2086608725 @default.
- W2763775926 cites W2090437031 @default.
- W2763775926 cites W2099852381 @default.
- W2763775926 cites W2101779407 @default.
- W2763775926 cites W2103826029 @default.
- W2763775926 cites W2104748092 @default.
- W2763775926 cites W2104837514 @default.
- W2763775926 cites W2105791725 @default.
- W2763775926 cites W2119010790 @default.
- W2763775926 cites W2124904730 @default.
- W2763775926 cites W2127490708 @default.
- W2763775926 cites W2129203382 @default.
- W2763775926 cites W2129899383 @default.
- W2763775926 cites W2132774088 @default.
- W2763775926 cites W2134643957 @default.
- W2763775926 cites W2134844911 @default.
- W2763775926 cites W2139836502 @default.
- W2763775926 cites W2141955911 @default.
- W2763775926 cites W2144304061 @default.
- W2763775926 cites W2146996243 @default.
- W2763775926 cites W2147434684 @default.
- W2763775926 cites W2147809931 @default.
- W2763775926 cites W2150287052 @default.
- W2763775926 cites W2151716143 @default.
- W2763775926 cites W2156643424 @default.
- W2763775926 cites W2162214076 @default.
- W2763775926 cites W2163972700 @default.
- W2763775926 cites W2164231461 @default.
- W2763775926 cites W2165977355 @default.
- W2763775926 cites W2192663690 @default.
- W2763775926 cites W2228778875 @default.
- W2763775926 cites W2298841121 @default.
- W2763775926 cites W2306151672 @default.
- W2763775926 cites W2320398552 @default.
- W2763775926 cites W2397336531 @default.
- W2763775926 cites W2423882823 @default.
- W2763775926 cites W2532793408 @default.
- W2763775926 cites W2550752903 @default.
- W2763775926 cites W2585550812 @default.
- W2763775926 cites W2609683693 @default.
- W2763775926 cites W2622052922 @default.
- W2763775926 cites W2624980422 @default.
- W2763775926 cites W2751119664 @default.
- W2763775926 cites W2755166641 @default.
- W2763775926 cites W283743225 @default.
- W2763775926 cites W4205182410 @default.
- W2763775926 cites W4238039508 @default.
- W2763775926 cites W4248984680 @default.
- W2763775926 cites W4292822122 @default.
- W2763775926 doi "https://doi.org/10.5194/acp-18-2929-2018" @default.
- W2763775926 hasPublicationYear "2018" @default.
- W2763775926 type Work @default.
- W2763775926 sameAs 2763775926 @default.
- W2763775926 citedByCount "88" @default.
- W2763775926 countsByYear W27637759262018 @default.
- W2763775926 countsByYear W27637759262019 @default.
- W2763775926 countsByYear W27637759262020 @default.
- W2763775926 countsByYear W27637759262021 @default.
- W2763775926 countsByYear W27637759262022 @default.
- W2763775926 countsByYear W27637759262023 @default.
- W2763775926 crossrefType "journal-article" @default.
- W2763775926 hasAuthorship W2763775926A5005051998 @default.
- W2763775926 hasAuthorship W2763775926A5007063168 @default.
- W2763775926 hasAuthorship W2763775926A5010313313 @default.