Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763889376> ?p ?o ?g. }
- W2763889376 endingPage "339" @default.
- W2763889376 startingPage "328" @default.
- W2763889376 abstract "The recent surge in enthusiasm for simultaneously inferring relationships from extinct and extant species has reinvigorated interest in statistical approaches for modeling morphological evolution. Current statistical methods use the Mk model to describe substitutions between discrete character states. Although representing a significant step forward, the Mk model presents challenges in biological interpretation, and its adequacy in modeling morphological evolution has not been well explored. Another major hurdle in morphological phylogenetics concerns the process of character coding of discrete characters. The often subjective nature of discrete character coding can generate discordant results that are rooted in individual researchers’ subjective interpretations. Employing continuous measurements to infer phylogenies may alleviate some of these issues. Although not widely used in the inference of topology, models describing the evolution of continuous characters have been well examined, and their statistical behavior is well understood. Also, continuous measurements avoid the substantial ambiguity often associated with the assignment of discrete characters to states. I present a set of simulations to determine whether use of continuous characters is a feasible alternative or supplement to discrete characters for inferring phylogeny. I compare relative reconstruction accuracy by inferring phylogenies from simulated continuous and discrete characters. These tests demonstrate significant promise for continuous traits by demonstrating their higher overall accuracy as compared to reconstruction from discrete characters under Mk when simulated under unbounded Brownian motion, and equal performance when simulated under an Ornstein–Uhlenbeck model. Continuous characters also perform reasonably well in the presence of covariance between sites. I argue that inferring phylogenies directly from continuous traits may be benefit efforts to maximize phylogenetic information in morphological data sets by preserving larger variation in state space compared to many discretization schemes. I also suggest that the use of continuous trait models in phylogenetic reconstruction may alleviate potential concerns of discrete character model adequacy, while identifying areas that require further study in this area. This study provides an initial controlled demonstration of the efficacy of continuous characters in phylogenetic inference." @default.
- W2763889376 created "2017-10-20" @default.
- W2763889376 creator A5091314647 @default.
- W2763889376 date "2017-09-01" @default.
- W2763889376 modified "2023-10-06" @default.
- W2763889376 title "Use of Continuous Traits Can Improve Morphological Phylogenetics" @default.
- W2763889376 cites W1422835561 @default.
- W2763889376 cites W1483090932 @default.
- W2763889376 cites W1530022729 @default.
- W2763889376 cites W1532752689 @default.
- W2763889376 cites W1582956895 @default.
- W2763889376 cites W1605984840 @default.
- W2763889376 cites W1822222297 @default.
- W2763889376 cites W1922073939 @default.
- W2763889376 cites W1978224130 @default.
- W2763889376 cites W1981694118 @default.
- W2763889376 cites W1992714434 @default.
- W2763889376 cites W1995768388 @default.
- W2763889376 cites W2004526095 @default.
- W2763889376 cites W2006712471 @default.
- W2763889376 cites W2010121293 @default.
- W2763889376 cites W2013410948 @default.
- W2763889376 cites W2025306791 @default.
- W2763889376 cites W2026062398 @default.
- W2763889376 cites W2026763967 @default.
- W2763889376 cites W2031514201 @default.
- W2763889376 cites W2045457895 @default.
- W2763889376 cites W2060425093 @default.
- W2763889376 cites W2067046632 @default.
- W2763889376 cites W2069426323 @default.
- W2763889376 cites W2071530460 @default.
- W2763889376 cites W2077186234 @default.
- W2763889376 cites W2087227386 @default.
- W2763889376 cites W2091626902 @default.
- W2763889376 cites W2096519507 @default.
- W2763889376 cites W2102424972 @default.
- W2763889376 cites W2103950304 @default.
- W2763889376 cites W2107110596 @default.
- W2763889376 cites W2107584607 @default.
- W2763889376 cites W2108087670 @default.
- W2763889376 cites W2111931534 @default.
- W2763889376 cites W2117723740 @default.
- W2763889376 cites W2118553987 @default.
- W2763889376 cites W2122082385 @default.
- W2763889376 cites W2124800909 @default.
- W2763889376 cites W2131590555 @default.
- W2763889376 cites W2134871125 @default.
- W2763889376 cites W2135797361 @default.
- W2763889376 cites W2139736670 @default.
- W2763889376 cites W2140761106 @default.
- W2763889376 cites W2141865835 @default.
- W2763889376 cites W2142038331 @default.
- W2763889376 cites W2146058063 @default.
- W2763889376 cites W2147058416 @default.
- W2763889376 cites W2148596378 @default.
- W2763889376 cites W2149729335 @default.
- W2763889376 cites W2150900397 @default.
- W2763889376 cites W2151819241 @default.
- W2763889376 cites W2153165351 @default.
- W2763889376 cites W2154951808 @default.
- W2763889376 cites W2157460884 @default.
- W2763889376 cites W2159597448 @default.
- W2763889376 cites W2160258475 @default.
- W2763889376 cites W2162399971 @default.
- W2763889376 cites W2162683818 @default.
- W2763889376 cites W2164214415 @default.
- W2763889376 cites W2168460688 @default.
- W2763889376 cites W2168696662 @default.
- W2763889376 cites W2169564645 @default.
- W2763889376 cites W2171925653 @default.
- W2763889376 cites W2172186016 @default.
- W2763889376 cites W2179984775 @default.
- W2763889376 cites W2211853376 @default.
- W2763889376 cites W2219801887 @default.
- W2763889376 cites W2270430976 @default.
- W2763889376 cites W2326475460 @default.
- W2763889376 cites W2327636343 @default.
- W2763889376 cites W2328578724 @default.
- W2763889376 cites W2341660393 @default.
- W2763889376 cites W2344833538 @default.
- W2763889376 cites W2408731419 @default.
- W2763889376 cites W2433199851 @default.
- W2763889376 cites W4236954050 @default.
- W2763889376 cites W4248894226 @default.
- W2763889376 cites W4254687493 @default.
- W2763889376 doi "https://doi.org/10.1093/sysbio/syx072" @default.
- W2763889376 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28945906" @default.
- W2763889376 hasPublicationYear "2017" @default.
- W2763889376 type Work @default.
- W2763889376 sameAs 2763889376 @default.
- W2763889376 citedByCount "59" @default.
- W2763889376 countsByYear W27638893762018 @default.
- W2763889376 countsByYear W27638893762019 @default.
- W2763889376 countsByYear W27638893762020 @default.
- W2763889376 countsByYear W27638893762021 @default.
- W2763889376 countsByYear W27638893762022 @default.
- W2763889376 countsByYear W27638893762023 @default.
- W2763889376 crossrefType "journal-article" @default.