Matches in SemOpenAlex for { <https://semopenalex.org/work/W2763972794> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2763972794 abstract "The Corpus Callosum (CC) segmentation on Magnetic Resonance Images (MRI) is of utmost importance for the study of neurodegenerative diseases, since it is the largest white matter brain structure, interconnecting the two cerebral hemispheres. Operator-independent segmentation methods are desirable, even though such task is complex due to shape and intensity variation among subjects, especially on low resolution images such as Diffusion-MRI. This paper proposes an automatic CC segmentation approach on Diffusion Tensor imaging (DTI). The method uses Growing Neural Gas (GNG) network, an unsupervised machine learning algorithm, on the fractional anisotropy map. The proposed method obtained a Dice coefficient of 0.88 in experiments using DTI of fifty human subjects, while other segmentation approaches obtained Dice results below 0.73. Although the GNG network had five parameters to be set, it requires no user intervention and was the only method that successfully detected and segmented the CC on all experimented dataset." @default.
- W2763972794 created "2017-10-20" @default.
- W2763972794 creator A5017698959 @default.
- W2763972794 creator A5037159637 @default.
- W2763972794 creator A5065407151 @default.
- W2763972794 creator A5083770219 @default.
- W2763972794 date "2017-10-13" @default.
- W2763972794 modified "2023-10-09" @default.
- W2763972794 title "Corpus Callosum 2D Segmentation on Diffusion Tensor Imaging Using Growing Neural Gas Network" @default.
- W2763972794 cites W1630337695 @default.
- W2763972794 cites W1984939243 @default.
- W2763972794 cites W1990517717 @default.
- W2763972794 cites W2012206457 @default.
- W2763972794 cites W2016662141 @default.
- W2763972794 cites W2021068147 @default.
- W2763972794 cites W2021466830 @default.
- W2763972794 cites W2022101759 @default.
- W2763972794 cites W2047804403 @default.
- W2763972794 cites W2047870719 @default.
- W2763972794 cites W2061884970 @default.
- W2763972794 cites W2067774627 @default.
- W2763972794 cites W2075817581 @default.
- W2763972794 cites W2078628467 @default.
- W2763972794 cites W2117468830 @default.
- W2763972794 cites W2153087078 @default.
- W2763972794 doi "https://doi.org/10.1007/978-3-319-68195-5_23" @default.
- W2763972794 hasPublicationYear "2017" @default.
- W2763972794 type Work @default.
- W2763972794 sameAs 2763972794 @default.
- W2763972794 citedByCount "1" @default.
- W2763972794 countsByYear W27639727942020 @default.
- W2763972794 crossrefType "book-chapter" @default.
- W2763972794 hasAuthorship W2763972794A5017698959 @default.
- W2763972794 hasAuthorship W2763972794A5037159637 @default.
- W2763972794 hasAuthorship W2763972794A5065407151 @default.
- W2763972794 hasAuthorship W2763972794A5083770219 @default.
- W2763972794 hasConcept C124504099 @default.
- W2763972794 hasConcept C126838900 @default.
- W2763972794 hasConcept C143409427 @default.
- W2763972794 hasConcept C149550507 @default.
- W2763972794 hasConcept C153180895 @default.
- W2763972794 hasConcept C154945302 @default.
- W2763972794 hasConcept C15744967 @default.
- W2763972794 hasConcept C163892561 @default.
- W2763972794 hasConcept C169760540 @default.
- W2763972794 hasConcept C2778183499 @default.
- W2763972794 hasConcept C2781192897 @default.
- W2763972794 hasConcept C31972630 @default.
- W2763972794 hasConcept C41008148 @default.
- W2763972794 hasConcept C50644808 @default.
- W2763972794 hasConcept C71924100 @default.
- W2763972794 hasConcept C89600930 @default.
- W2763972794 hasConcept C89916169 @default.
- W2763972794 hasConceptScore W2763972794C124504099 @default.
- W2763972794 hasConceptScore W2763972794C126838900 @default.
- W2763972794 hasConceptScore W2763972794C143409427 @default.
- W2763972794 hasConceptScore W2763972794C149550507 @default.
- W2763972794 hasConceptScore W2763972794C153180895 @default.
- W2763972794 hasConceptScore W2763972794C154945302 @default.
- W2763972794 hasConceptScore W2763972794C15744967 @default.
- W2763972794 hasConceptScore W2763972794C163892561 @default.
- W2763972794 hasConceptScore W2763972794C169760540 @default.
- W2763972794 hasConceptScore W2763972794C2778183499 @default.
- W2763972794 hasConceptScore W2763972794C2781192897 @default.
- W2763972794 hasConceptScore W2763972794C31972630 @default.
- W2763972794 hasConceptScore W2763972794C41008148 @default.
- W2763972794 hasConceptScore W2763972794C50644808 @default.
- W2763972794 hasConceptScore W2763972794C71924100 @default.
- W2763972794 hasConceptScore W2763972794C89600930 @default.
- W2763972794 hasConceptScore W2763972794C89916169 @default.
- W2763972794 hasLocation W27639727941 @default.
- W2763972794 hasOpenAccess W2763972794 @default.
- W2763972794 hasPrimaryLocation W27639727941 @default.
- W2763972794 hasRelatedWork W1965087747 @default.
- W2763972794 hasRelatedWork W1974312239 @default.
- W2763972794 hasRelatedWork W1980921487 @default.
- W2763972794 hasRelatedWork W2079533938 @default.
- W2763972794 hasRelatedWork W2114379490 @default.
- W2763972794 hasRelatedWork W2168881336 @default.
- W2763972794 hasRelatedWork W2183848473 @default.
- W2763972794 hasRelatedWork W2327477616 @default.
- W2763972794 hasRelatedWork W2332569964 @default.
- W2763972794 hasRelatedWork W2338663978 @default.
- W2763972794 hasRelatedWork W2764303658 @default.
- W2763972794 hasRelatedWork W2794050048 @default.
- W2763972794 hasRelatedWork W3023623136 @default.
- W2763972794 hasRelatedWork W3037637687 @default.
- W2763972794 hasRelatedWork W3095083106 @default.
- W2763972794 hasRelatedWork W3108459041 @default.
- W2763972794 hasRelatedWork W311151371 @default.
- W2763972794 hasRelatedWork W3120953296 @default.
- W2763972794 hasRelatedWork W3163505743 @default.
- W2763972794 hasRelatedWork W3187921874 @default.
- W2763972794 isParatext "false" @default.
- W2763972794 isRetracted "false" @default.
- W2763972794 magId "2763972794" @default.
- W2763972794 workType "book-chapter" @default.