Matches in SemOpenAlex for { <https://semopenalex.org/work/W2764053611> ?p ?o ?g. }
- W2764053611 abstract "There are several techniques available for electromagnetic (EM) forward modeling in inhomogeneous media. They are based on numerical implementation of the differential equation (DE) approach (finite difference, FD, or finite element, FE, methods) or the integral equation (IE) approach. In this chapter, I discuss the principles of all these methods. The integral equation (IE) method is a powerful tool in electromagnetic (EM) modeling for geophysical applications. We derive the fundamental equations of the IE method in two and three dimensions and consider the methods of their solution in isotropic and anisotropic media. An effective approach to solve the system of integral equations is based on application of the contraction operator, which can be treated as an effective preconditioner of the original system of equations. We also consider a family of linear and nonlinear integral approximations of the EM fields, based on the IE formulation of Maxwell's equations. Another powerful group of methods of numerical modeling of EM fields uses differential equation methods. We discuss in detail the most important of these methods, the finite difference (FD) and finite element (FE) methods. The finite difference method provides a simple but effective tool for numerically solving the electromagnetic boundary-value problem. We present a discretization of Maxwell's equations using a staggered grid, and introduce a contraction preconditioner for a system of FD equations. Finally, this chapter concludes with the exposition of the most powerful technique for numerical modeling – the method of finite elements." @default.
- W2764053611 created "2017-10-20" @default.
- W2764053611 creator A5071334092 @default.
- W2764053611 date "2018-01-01" @default.
- W2764053611 modified "2023-10-08" @default.
- W2764053611 title "Electromagnetic Fields in Inhomogeneous Media" @default.
- W2764053611 cites W1498037237 @default.
- W2764053611 cites W1506342804 @default.
- W2764053611 cites W1527335220 @default.
- W2764053611 cites W1579791572 @default.
- W2764053611 cites W1614715782 @default.
- W2764053611 cites W1666853924 @default.
- W2764053611 cites W1964543807 @default.
- W2764053611 cites W1967210059 @default.
- W2764053611 cites W1967818223 @default.
- W2764053611 cites W1968735454 @default.
- W2764053611 cites W1973334929 @default.
- W2764053611 cites W1976724099 @default.
- W2764053611 cites W1977355702 @default.
- W2764053611 cites W1981325185 @default.
- W2764053611 cites W1984192145 @default.
- W2764053611 cites W1988271447 @default.
- W2764053611 cites W1994751539 @default.
- W2764053611 cites W1997590318 @default.
- W2764053611 cites W2001431479 @default.
- W2764053611 cites W2003017040 @default.
- W2764053611 cites W2015534237 @default.
- W2764053611 cites W2017703230 @default.
- W2764053611 cites W2018446638 @default.
- W2764053611 cites W2024402317 @default.
- W2764053611 cites W2030089857 @default.
- W2764053611 cites W2032231305 @default.
- W2764053611 cites W2035514006 @default.
- W2764053611 cites W2035596129 @default.
- W2764053611 cites W2042755546 @default.
- W2764053611 cites W2051527889 @default.
- W2764053611 cites W2054975316 @default.
- W2764053611 cites W2058665447 @default.
- W2764053611 cites W2059083902 @default.
- W2764053611 cites W2062618977 @default.
- W2764053611 cites W2067478952 @default.
- W2764053611 cites W2069118714 @default.
- W2764053611 cites W2069323543 @default.
- W2764053611 cites W2071419291 @default.
- W2764053611 cites W2074412865 @default.
- W2764053611 cites W2088063444 @default.
- W2764053611 cites W2090752061 @default.
- W2764053611 cites W2097575498 @default.
- W2764053611 cites W2098712263 @default.
- W2764053611 cites W2105072582 @default.
- W2764053611 cites W2109911863 @default.
- W2764053611 cites W2111129593 @default.
- W2764053611 cites W2112219421 @default.
- W2764053611 cites W2112262385 @default.
- W2764053611 cites W2115625621 @default.
- W2764053611 cites W2119117079 @default.
- W2764053611 cites W2120828529 @default.
- W2764053611 cites W2121052011 @default.
- W2764053611 cites W2122662657 @default.
- W2764053611 cites W2125404727 @default.
- W2764053611 cites W2125524683 @default.
- W2764053611 cites W2125794497 @default.
- W2764053611 cites W2126865599 @default.
- W2764053611 cites W2127859189 @default.
- W2764053611 cites W2128274957 @default.
- W2764053611 cites W2130511734 @default.
- W2764053611 cites W2133454905 @default.
- W2764053611 cites W2142063750 @default.
- W2764053611 cites W2145002036 @default.
- W2764053611 cites W2146085502 @default.
- W2764053611 cites W2148357326 @default.
- W2764053611 cites W2153625108 @default.
- W2764053611 cites W2153694492 @default.
- W2764053611 cites W2154870155 @default.
- W2764053611 cites W2163361896 @default.
- W2764053611 cites W2164101143 @default.
- W2764053611 cites W2165003270 @default.
- W2764053611 cites W2167121527 @default.
- W2764053611 cites W2272716299 @default.
- W2764053611 cites W2431715101 @default.
- W2764053611 cites W2481870770 @default.
- W2764053611 cites W2506437298 @default.
- W2764053611 cites W2798909945 @default.
- W2764053611 cites W297101097 @default.
- W2764053611 cites W3134506696 @default.
- W2764053611 cites W3139543928 @default.
- W2764053611 cites W592157197 @default.
- W2764053611 cites W647089605 @default.
- W2764053611 cites W652498153 @default.
- W2764053611 cites W2915092065 @default.
- W2764053611 doi "https://doi.org/10.1016/b978-0-44-463890-8.00008-6" @default.
- W2764053611 hasPublicationYear "2018" @default.
- W2764053611 type Work @default.
- W2764053611 sameAs 2764053611 @default.
- W2764053611 citedByCount "4" @default.
- W2764053611 countsByYear W27640536112015 @default.
- W2764053611 countsByYear W27640536112023 @default.
- W2764053611 crossrefType "book-chapter" @default.
- W2764053611 hasAuthorship W2764053611A5071334092 @default.
- W2764053611 hasConcept C121332964 @default.