Matches in SemOpenAlex for { <https://semopenalex.org/work/W2764283072> ?p ?o ?g. }
- W2764283072 abstract "Despite increasing accessibility of the 3D scanning devices, acquisition of the 2D photographs is still more widely used method to capture human faces. However, many virtual scenarios require 3D representation of the human face. We present an automatic method of the human face reconstruction from a single frontal photograph. Our approach utilizes a database of the precomputed depth images, which we generated from the FIDENTIS Database. This allows us to the avoid lighting constraints, that are often posed on the input data for 2D reconstruction of the human faces. We assume the input image comes annotated with a set of landmarks and we then proceed to reconstruct a 3D representation of the input image by choosing the most appropriate depth image from the database. While the precision of the landmark localization influences the reconstruction, we show, that using the automatic landmark detection methods we can reconstruct a recognizable 3D human face. We further show, that despite a small number of the depth images, the generated meshes are morphologically diverse to a degree, which is suitable for virtual simulations and computer games." @default.
- W2764283072 created "2017-10-20" @default.
- W2764283072 creator A5007851703 @default.
- W2764283072 creator A5029295004 @default.
- W2764283072 creator A5059441638 @default.
- W2764283072 creator A5073292952 @default.
- W2764283072 date "2017-09-01" @default.
- W2764283072 modified "2023-09-23" @default.
- W2764283072 title "Single image reconstruction of human faces using database of depth images" @default.
- W2764283072 cites W125358319 @default.
- W2764283072 cites W126840538 @default.
- W2764283072 cites W1493146138 @default.
- W2764283072 cites W1561105421 @default.
- W2764283072 cites W1569530544 @default.
- W2764283072 cites W1574733318 @default.
- W2764283072 cites W1971517213 @default.
- W2764283072 cites W1978642336 @default.
- W2764283072 cites W2006396739 @default.
- W2764283072 cites W2056158328 @default.
- W2764283072 cites W2075343959 @default.
- W2764283072 cites W2081660651 @default.
- W2764283072 cites W2082229127 @default.
- W2764283072 cites W2093747323 @default.
- W2764283072 cites W2115252128 @default.
- W2764283072 cites W2116264069 @default.
- W2764283072 cites W2116277445 @default.
- W2764283072 cites W2118304946 @default.
- W2764283072 cites W2121956191 @default.
- W2764283072 cites W2126260536 @default.
- W2764283072 cites W2130093472 @default.
- W2764283072 cites W2133533182 @default.
- W2764283072 cites W2135132101 @default.
- W2764283072 cites W2136863438 @default.
- W2764283072 cites W2146566773 @default.
- W2764283072 cites W2164321895 @default.
- W2764283072 cites W2237250383 @default.
- W2764283072 cites W2314656959 @default.
- W2764283072 cites W2396100380 @default.
- W2764283072 cites W2471928626 @default.
- W2764283072 cites W2496066288 @default.
- W2764283072 cites W2519131448 @default.
- W2764283072 cites W2606794139 @default.
- W2764283072 cites W2609190196 @default.
- W2764283072 cites W2609190699 @default.
- W2764283072 cites W2964014798 @default.
- W2764283072 cites W2916808392 @default.
- W2764283072 doi "https://doi.org/10.1109/vs-games.2017.8056578" @default.
- W2764283072 hasPublicationYear "2017" @default.
- W2764283072 type Work @default.
- W2764283072 sameAs 2764283072 @default.
- W2764283072 citedByCount "1" @default.
- W2764283072 countsByYear W27642830722018 @default.
- W2764283072 crossrefType "proceedings-article" @default.
- W2764283072 hasAuthorship W2764283072A5007851703 @default.
- W2764283072 hasAuthorship W2764283072A5029295004 @default.
- W2764283072 hasAuthorship W2764283072A5059441638 @default.
- W2764283072 hasAuthorship W2764283072A5073292952 @default.
- W2764283072 hasConcept C115961682 @default.
- W2764283072 hasConcept C121684516 @default.
- W2764283072 hasConcept C141379421 @default.
- W2764283072 hasConcept C144024400 @default.
- W2764283072 hasConcept C153180895 @default.
- W2764283072 hasConcept C154945302 @default.
- W2764283072 hasConcept C177264268 @default.
- W2764283072 hasConcept C17744445 @default.
- W2764283072 hasConcept C199360897 @default.
- W2764283072 hasConcept C199539241 @default.
- W2764283072 hasConcept C2776359362 @default.
- W2764283072 hasConcept C2779304628 @default.
- W2764283072 hasConcept C2780297707 @default.
- W2764283072 hasConcept C31487907 @default.
- W2764283072 hasConcept C31972630 @default.
- W2764283072 hasConcept C36289849 @default.
- W2764283072 hasConcept C41008148 @default.
- W2764283072 hasConcept C58489278 @default.
- W2764283072 hasConcept C94625758 @default.
- W2764283072 hasConceptScore W2764283072C115961682 @default.
- W2764283072 hasConceptScore W2764283072C121684516 @default.
- W2764283072 hasConceptScore W2764283072C141379421 @default.
- W2764283072 hasConceptScore W2764283072C144024400 @default.
- W2764283072 hasConceptScore W2764283072C153180895 @default.
- W2764283072 hasConceptScore W2764283072C154945302 @default.
- W2764283072 hasConceptScore W2764283072C177264268 @default.
- W2764283072 hasConceptScore W2764283072C17744445 @default.
- W2764283072 hasConceptScore W2764283072C199360897 @default.
- W2764283072 hasConceptScore W2764283072C199539241 @default.
- W2764283072 hasConceptScore W2764283072C2776359362 @default.
- W2764283072 hasConceptScore W2764283072C2779304628 @default.
- W2764283072 hasConceptScore W2764283072C2780297707 @default.
- W2764283072 hasConceptScore W2764283072C31487907 @default.
- W2764283072 hasConceptScore W2764283072C31972630 @default.
- W2764283072 hasConceptScore W2764283072C36289849 @default.
- W2764283072 hasConceptScore W2764283072C41008148 @default.
- W2764283072 hasConceptScore W2764283072C58489278 @default.
- W2764283072 hasConceptScore W2764283072C94625758 @default.
- W2764283072 hasLocation W27642830721 @default.
- W2764283072 hasOpenAccess W2764283072 @default.
- W2764283072 hasPrimaryLocation W27642830721 @default.
- W2764283072 hasRelatedWork W1583209727 @default.
- W2764283072 hasRelatedWork W1927784829 @default.