Matches in SemOpenAlex for { <https://semopenalex.org/work/W2764304832> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2764304832 abstract "Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR) spectroscopy can open up the possibility of studying many scientifically and biologically relevant samples at the µm and sub-µm scale. Examples of volume-limited systems include numerous species of microorganisms, mammalian zygotes, the majority of cells, proteins limited in growth, micro and nanostructured devices for the analysis of spin dynamics at the sub-µm scale. These volume-limited samples cannot be addressed by commercially available inductive spectrometers due to their constraint in sensitivity. It was previously proposed in our group that CMOS technology can be used to realize miniaturized high sensitivity inductive detection systems, having spin sensitivities at least two orders of magnitude greater than the commercially available spectrometers. During my PhD work, I developed methods and microfabrication techniques to perform NMR, EPR and FMR spectroscopy at the µm and sub-µm scale by using high sensitivity single chip CMOS detectors, previously proposed in our group. Microfluidic systems for the non-invasive handling of liquid samples and biological entities immersed in liquids are realized and integrated with the CMOS single chip NMR and EPR detectors. Microfluidic channels are fabricated via conventional microfabrication techniques and via two-photon polymerization, a 3D printing technique with a lateral resolution of 300 nm. The 3D printing technique is found to be an exceptional solution for NMR applications. Due to the flexibility in the design of the microfluidic systems, it is possible to reduce the magnetic field non-uniformieties with a consequent improval in spectral resolution. Spectral resolutions down to 0.007 ppm are reported for liquids having sample volumes of 100 pL. For the first time, NMR studies on intact biological entities submerged in liquid media of choice are performed, using 3D printed microfluidic systems. A spin sensitivity of 2.5·1013 spins/?Hz is shown, sufficient to detect highly concentrated endogenous compounds in active volumes down to 100 pL with measurement times down to 3 h. EPR measurements on subnanoliter liquids and frozen solutions are reported, by the combination of commercially available capillaries and EPR single chip detectors. This is a first but important step towards the study of biological samples, whose paramagnetic ions have relaxation times too short to be measured at room temperature. Moreover, a novel method for the sensing of magnetic microbeads is presented, which is based on the detection of the change of susceptibility in FMR condition by the CMOS integrated detector. Due to the frequency and field dependence of the susceptibility, the detected variation is 20 times greater than the change in magnetization measured in static conditions by other approaches. The proposed detection scheme allows for single bead sensitivity over an active area of about 5·104 µm2. Lastly, sub-µm scale FMR detection capabilities of the single chip CMOS detector are shown by experiments on nanopatterned single permalloy (80% Ni - 20% Fe) and YIG (Yittrium Iron Garnet) dots. The combination of high sensitivity and large active area is seen as a considerable advantage with respect to other FMR detection methods, which suffer either from sensitivity or from reduced active area." @default.
- W2764304832 created "2017-10-20" @default.
- W2764304832 creator A5055273905 @default.
- W2764304832 date "2017-01-01" @default.
- W2764304832 modified "2023-09-23" @default.
- W2764304832 title "Methods and microfabrication techniques for subnanoliter magnetic resonance spectroscopy" @default.
- W2764304832 doi "https://doi.org/10.5075/epfl-thesis-8006" @default.
- W2764304832 hasPublicationYear "2017" @default.
- W2764304832 type Work @default.
- W2764304832 sameAs 2764304832 @default.
- W2764304832 citedByCount "0" @default.
- W2764304832 crossrefType "journal-article" @default.
- W2764304832 hasAuthorship W2764304832A5055273905 @default.
- W2764304832 hasConcept C113196181 @default.
- W2764304832 hasConcept C120665830 @default.
- W2764304832 hasConcept C121332964 @default.
- W2764304832 hasConcept C136525101 @default.
- W2764304832 hasConcept C138268822 @default.
- W2764304832 hasConcept C142724271 @default.
- W2764304832 hasConcept C154945302 @default.
- W2764304832 hasConcept C171250308 @default.
- W2764304832 hasConcept C185592680 @default.
- W2764304832 hasConcept C187961010 @default.
- W2764304832 hasConcept C192562407 @default.
- W2764304832 hasConcept C204787440 @default.
- W2764304832 hasConcept C32891209 @default.
- W2764304832 hasConcept C33390570 @default.
- W2764304832 hasConcept C41008148 @default.
- W2764304832 hasConcept C43617362 @default.
- W2764304832 hasConcept C46141821 @default.
- W2764304832 hasConcept C49040817 @default.
- W2764304832 hasConcept C527607 @default.
- W2764304832 hasConcept C62520636 @default.
- W2764304832 hasConcept C71924100 @default.
- W2764304832 hasConcept C8673954 @default.
- W2764304832 hasConceptScore W2764304832C113196181 @default.
- W2764304832 hasConceptScore W2764304832C120665830 @default.
- W2764304832 hasConceptScore W2764304832C121332964 @default.
- W2764304832 hasConceptScore W2764304832C136525101 @default.
- W2764304832 hasConceptScore W2764304832C138268822 @default.
- W2764304832 hasConceptScore W2764304832C142724271 @default.
- W2764304832 hasConceptScore W2764304832C154945302 @default.
- W2764304832 hasConceptScore W2764304832C171250308 @default.
- W2764304832 hasConceptScore W2764304832C185592680 @default.
- W2764304832 hasConceptScore W2764304832C187961010 @default.
- W2764304832 hasConceptScore W2764304832C192562407 @default.
- W2764304832 hasConceptScore W2764304832C204787440 @default.
- W2764304832 hasConceptScore W2764304832C32891209 @default.
- W2764304832 hasConceptScore W2764304832C33390570 @default.
- W2764304832 hasConceptScore W2764304832C41008148 @default.
- W2764304832 hasConceptScore W2764304832C43617362 @default.
- W2764304832 hasConceptScore W2764304832C46141821 @default.
- W2764304832 hasConceptScore W2764304832C49040817 @default.
- W2764304832 hasConceptScore W2764304832C527607 @default.
- W2764304832 hasConceptScore W2764304832C62520636 @default.
- W2764304832 hasConceptScore W2764304832C71924100 @default.
- W2764304832 hasConceptScore W2764304832C8673954 @default.
- W2764304832 hasLocation W27643048321 @default.
- W2764304832 hasOpenAccess W2764304832 @default.
- W2764304832 hasPrimaryLocation W27643048321 @default.
- W2764304832 hasRelatedWork W1510091928 @default.
- W2764304832 hasRelatedWork W196300096 @default.
- W2764304832 hasRelatedWork W1976635758 @default.
- W2764304832 hasRelatedWork W1985528268 @default.
- W2764304832 hasRelatedWork W2015830444 @default.
- W2764304832 hasRelatedWork W2022333006 @default.
- W2764304832 hasRelatedWork W2024709376 @default.
- W2764304832 hasRelatedWork W2051408621 @default.
- W2764304832 hasRelatedWork W229000874 @default.
- W2764304832 hasRelatedWork W2548350727 @default.
- W2764304832 hasRelatedWork W2736970943 @default.
- W2764304832 hasRelatedWork W2850544644 @default.
- W2764304832 hasRelatedWork W2888401974 @default.
- W2764304832 hasRelatedWork W2902597177 @default.
- W2764304832 hasRelatedWork W2927862079 @default.
- W2764304832 hasRelatedWork W3009350295 @default.
- W2764304832 hasRelatedWork W3101797731 @default.
- W2764304832 hasRelatedWork W3165332390 @default.
- W2764304832 hasRelatedWork W1501047854 @default.
- W2764304832 hasRelatedWork W2936179453 @default.
- W2764304832 isParatext "false" @default.
- W2764304832 isRetracted "false" @default.
- W2764304832 magId "2764304832" @default.
- W2764304832 workType "article" @default.