Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765104507> ?p ?o ?g. }
- W2765104507 endingPage "120" @default.
- W2765104507 startingPage "120" @default.
- W2765104507 abstract "Advanced global optimization algorithms have been continuously introduced and improved to solve various complex design optimization problems for which the objective and constraint functions can only be evaluated through computation intensive numerical analyses or simulations with a large number of design variables. The often implicit, multimodal, and ill-shaped objective and constraint functions in high-dimensional and “black-box” forms demand the search to be carried out using low number of function evaluations with high search efficiency and good robustness. This work investigates the performance of six recently introduced, nature-inspired global optimization methods: Artificial Bee Colony (ABC), Firefly Algorithm (FFA), Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA) and Grey Wolf Optimizer (GWO). These approaches are compared in terms of search efficiency and robustness in solving a set of representative benchmark problems in smooth-unimodal, non-smooth unimodal, smooth multimodal, and non-smooth multimodal function forms. In addition, four classic engineering optimization examples and a real-life complex mechanical system design optimization problem, floating offshore wind turbines design optimization, are used as additional test cases representing computationally-expensive black-box global optimization problems. Results from this comparative study show that the ability of these global optimization methods to obtain a good solution diminishes as the dimension of the problem, or number of design variables increases. Although none of these methods is universally capable, the study finds that GWO and ABC are more efficient on average than the other four in obtaining high quality solutions efficiently and consistently, solving 86% and 80% of the tested benchmark problems, respectively. The research contributes to future improvements of global optimization methods." @default.
- W2765104507 created "2017-11-10" @default.
- W2765104507 creator A5037756687 @default.
- W2765104507 creator A5047676992 @default.
- W2765104507 creator A5085008700 @default.
- W2765104507 date "2017-10-17" @default.
- W2765104507 modified "2023-10-16" @default.
- W2765104507 title "A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design" @default.
- W2765104507 cites W1128809682 @default.
- W2765104507 cites W1444952417 @default.
- W2765104507 cites W1527696706 @default.
- W2765104507 cites W1825762827 @default.
- W2765104507 cites W1826421496 @default.
- W2765104507 cites W1941620463 @default.
- W2765104507 cites W1964990651 @default.
- W2765104507 cites W1970204203 @default.
- W2765104507 cites W1971599865 @default.
- W2765104507 cites W1975645372 @default.
- W2765104507 cites W1976868141 @default.
- W2765104507 cites W1977877194 @default.
- W2765104507 cites W1980346192 @default.
- W2765104507 cites W1988066732 @default.
- W2765104507 cites W2002302337 @default.
- W2765104507 cites W2029846254 @default.
- W2765104507 cites W2037063559 @default.
- W2765104507 cites W2039911195 @default.
- W2765104507 cites W2042753855 @default.
- W2765104507 cites W2044587647 @default.
- W2765104507 cites W2045077776 @default.
- W2765104507 cites W2046224350 @default.
- W2765104507 cites W2046611948 @default.
- W2765104507 cites W2047626401 @default.
- W2765104507 cites W2058987629 @default.
- W2765104507 cites W2060623431 @default.
- W2765104507 cites W2060986680 @default.
- W2765104507 cites W2061438946 @default.
- W2765104507 cites W2065186919 @default.
- W2765104507 cites W2080457612 @default.
- W2765104507 cites W2086622126 @default.
- W2765104507 cites W2087464906 @default.
- W2765104507 cites W2089492481 @default.
- W2765104507 cites W2093209484 @default.
- W2765104507 cites W2093284687 @default.
- W2765104507 cites W2117640392 @default.
- W2765104507 cites W2131874682 @default.
- W2765104507 cites W2134236963 @default.
- W2765104507 cites W2143560894 @default.
- W2765104507 cites W2146439308 @default.
- W2765104507 cites W2153879578 @default.
- W2765104507 cites W2165203444 @default.
- W2765104507 cites W2167580870 @default.
- W2765104507 cites W2173470513 @default.
- W2765104507 cites W2183843206 @default.
- W2765104507 cites W2185533914 @default.
- W2765104507 cites W2269389625 @default.
- W2765104507 cites W2275352166 @default.
- W2765104507 cites W2277678953 @default.
- W2765104507 cites W2293237611 @default.
- W2765104507 cites W2313912006 @default.
- W2765104507 cites W2324411161 @default.
- W2765104507 cites W2334731071 @default.
- W2765104507 cites W2335942837 @default.
- W2765104507 cites W2345827752 @default.
- W2765104507 cites W2407299184 @default.
- W2765104507 cites W2423494995 @default.
- W2765104507 cites W2521125457 @default.
- W2765104507 cites W2523202702 @default.
- W2765104507 cites W2561312665 @default.
- W2765104507 cites W2565282243 @default.
- W2765104507 cites W2566101339 @default.
- W2765104507 cites W2576768541 @default.
- W2765104507 cites W2593487812 @default.
- W2765104507 cites W2622310785 @default.
- W2765104507 cites W2623324491 @default.
- W2765104507 cites W2625368457 @default.
- W2765104507 cites W2736831631 @default.
- W2765104507 cites W2749546756 @default.
- W2765104507 cites W3098924781 @default.
- W2765104507 cites W3105346980 @default.
- W2765104507 cites W659097678 @default.
- W2765104507 doi "https://doi.org/10.3390/a10040120" @default.
- W2765104507 hasPublicationYear "2017" @default.
- W2765104507 type Work @default.
- W2765104507 sameAs 2765104507 @default.
- W2765104507 citedByCount "14" @default.
- W2765104507 countsByYear W27651045072018 @default.
- W2765104507 countsByYear W27651045072019 @default.
- W2765104507 countsByYear W27651045072020 @default.
- W2765104507 countsByYear W27651045072022 @default.
- W2765104507 countsByYear W27651045072023 @default.
- W2765104507 crossrefType "journal-article" @default.
- W2765104507 hasAuthorship W2765104507A5037756687 @default.
- W2765104507 hasAuthorship W2765104507A5047676992 @default.
- W2765104507 hasAuthorship W2765104507A5085008700 @default.
- W2765104507 hasBestOaLocation W27651045071 @default.
- W2765104507 hasConcept C101219045 @default.
- W2765104507 hasConcept C104317684 @default.
- W2765104507 hasConcept C109718341 @default.