Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765131567> ?p ?o ?g. }
- W2765131567 endingPage "223" @default.
- W2765131567 startingPage "210" @default.
- W2765131567 abstract "Data streams have arisen as a relevant topic during the last few years as an efficient method for extracting knowledge from big data. In the robust layered ensemble model (RLEM) proposed in this paper for short-term traffic flow forecasting, incoming traffic flow data of all connected road links are organized in chunks corresponding to an optimal time lag. The RLEM model is composed of two layers. In the first layer, we cluster the chunks by using the Graded Possibilistic c-Means method. The second layer is made up by an ensemble of forecasters, each of them trained for short-term traffic flow forecasting on the chunks belonging to a specific cluster. In the operational phase, as a new chunk of traffic flow data presented as input to the RLEM, its memberships to all clusters are evaluated, and if it is not recognized as an outlier, the outputs of all forecasters are combined in an ensemble, obtaining in this a way a forecasting of traffic flow for a short-term time horizon. The proposed RLEM model is evaluated on a synthetic data set, on a traffic flow data simulator and on two real-world traffic flow data sets. The model gives an accurate forecasting of the traffic flow rates with outlier detection and shows a good adaptation to non-stationary traffic regimes. Given its characteristics of outlier detection, accuracy, and robustness, RLEM can be fruitfully integrated in traffic flow management systems." @default.
- W2765131567 created "2017-11-10" @default.
- W2765131567 creator A5042789365 @default.
- W2765131567 creator A5078310289 @default.
- W2765131567 creator A5079256075 @default.
- W2765131567 date "2017-09-01" @default.
- W2765131567 modified "2023-09-24" @default.
- W2765131567 title "Tracking Time Evolving Data Streams for Short-Term Traffic Forecasting" @default.
- W2765131567 cites W1799155143 @default.
- W2765131567 cites W1948722404 @default.
- W2765131567 cites W1975081465 @default.
- W2765131567 cites W1982039810 @default.
- W2765131567 cites W1988489815 @default.
- W2765131567 cites W1991515142 @default.
- W2765131567 cites W1994616650 @default.
- W2765131567 cites W2006636107 @default.
- W2765131567 cites W2008316021 @default.
- W2765131567 cites W2013050169 @default.
- W2765131567 cites W2036785686 @default.
- W2765131567 cites W2038185705 @default.
- W2765131567 cites W2040297119 @default.
- W2765131567 cites W2040704490 @default.
- W2765131567 cites W2045036792 @default.
- W2765131567 cites W2058063871 @default.
- W2765131567 cites W2073243777 @default.
- W2765131567 cites W2077096052 @default.
- W2765131567 cites W2077466428 @default.
- W2765131567 cites W2085033136 @default.
- W2765131567 cites W2087952713 @default.
- W2765131567 cites W2088220893 @default.
- W2765131567 cites W2091091431 @default.
- W2765131567 cites W2095897464 @default.
- W2765131567 cites W2096390285 @default.
- W2765131567 cites W2105760988 @default.
- W2765131567 cites W2113076747 @default.
- W2765131567 cites W2118211060 @default.
- W2765131567 cites W2120688485 @default.
- W2765131567 cites W2122646361 @default.
- W2765131567 cites W2123706197 @default.
- W2765131567 cites W2125817951 @default.
- W2765131567 cites W2125836384 @default.
- W2765131567 cites W2126626732 @default.
- W2765131567 cites W2127856486 @default.
- W2765131567 cites W2127983758 @default.
- W2765131567 cites W2131819535 @default.
- W2765131567 cites W2139691084 @default.
- W2765131567 cites W2144342293 @default.
- W2765131567 cites W2150884987 @default.
- W2765131567 cites W2155352808 @default.
- W2765131567 cites W2158038039 @default.
- W2765131567 cites W2159239469 @default.
- W2765131567 cites W2161266580 @default.
- W2765131567 cites W2162217115 @default.
- W2765131567 cites W2170936641 @default.
- W2765131567 cites W2556404926 @default.
- W2765131567 cites W4237219250 @default.
- W2765131567 cites W4241336979 @default.
- W2765131567 cites W4299429830 @default.
- W2765131567 doi "https://doi.org/10.1007/s41019-017-0048-y" @default.
- W2765131567 hasPublicationYear "2017" @default.
- W2765131567 type Work @default.
- W2765131567 sameAs 2765131567 @default.
- W2765131567 citedByCount "10" @default.
- W2765131567 countsByYear W27651315672018 @default.
- W2765131567 countsByYear W27651315672019 @default.
- W2765131567 countsByYear W27651315672020 @default.
- W2765131567 countsByYear W27651315672023 @default.
- W2765131567 crossrefType "journal-article" @default.
- W2765131567 hasAuthorship W2765131567A5042789365 @default.
- W2765131567 hasAuthorship W2765131567A5078310289 @default.
- W2765131567 hasAuthorship W2765131567A5079256075 @default.
- W2765131567 hasBestOaLocation W27651315671 @default.
- W2765131567 hasConcept C104317684 @default.
- W2765131567 hasConcept C121332964 @default.
- W2765131567 hasConcept C124101348 @default.
- W2765131567 hasConcept C154945302 @default.
- W2765131567 hasConcept C176715033 @default.
- W2765131567 hasConcept C185592680 @default.
- W2765131567 hasConcept C207512268 @default.
- W2765131567 hasConcept C31258907 @default.
- W2765131567 hasConcept C41008148 @default.
- W2765131567 hasConcept C55493867 @default.
- W2765131567 hasConcept C58489278 @default.
- W2765131567 hasConcept C61797465 @default.
- W2765131567 hasConcept C62520636 @default.
- W2765131567 hasConcept C63479239 @default.
- W2765131567 hasConcept C739882 @default.
- W2765131567 hasConcept C79337645 @default.
- W2765131567 hasConcept C79403827 @default.
- W2765131567 hasConcept C89198739 @default.
- W2765131567 hasConceptScore W2765131567C104317684 @default.
- W2765131567 hasConceptScore W2765131567C121332964 @default.
- W2765131567 hasConceptScore W2765131567C124101348 @default.
- W2765131567 hasConceptScore W2765131567C154945302 @default.
- W2765131567 hasConceptScore W2765131567C176715033 @default.
- W2765131567 hasConceptScore W2765131567C185592680 @default.
- W2765131567 hasConceptScore W2765131567C207512268 @default.
- W2765131567 hasConceptScore W2765131567C31258907 @default.