Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765150911> ?p ?o ?g. }
- W2765150911 abstract "We establish lower bounds on the complexity of finding $epsilon$-stationary points of smooth, non-convex high-dimensional functions using first-order methods. We prove that deterministic first-order methods, even applied to arbitrarily smooth functions, cannot achieve convergence rates in $epsilon$ better than $epsilon^{-8/5}$, which is within $epsilon^{-1/15}logfrac{1}{epsilon}$ of the best known rate for such methods. Moreover, for functions with Lipschitz first and second derivatives, we prove no deterministic first-order method can achieve convergence rates better than $epsilon^{-12/7}$, while $epsilon^{-2}$ is a lower bound for functions with only Lipschitz gradient. For convex functions with Lipschitz gradient, accelerated gradient descent achieves the rate $epsilon^{-1}logfrac{1}{epsilon}$, showing that finding stationary points is easier given convexity." @default.
- W2765150911 created "2017-11-10" @default.
- W2765150911 creator A5035869365 @default.
- W2765150911 creator A5061331093 @default.
- W2765150911 creator A5081468859 @default.
- W2765150911 creator A5086787265 @default.
- W2765150911 date "2017-11-02" @default.
- W2765150911 modified "2023-09-27" @default.
- W2765150911 title "Lower Bounds for Finding Stationary Points II: First-Order Methods" @default.
- W2765150911 cites W2043093325 @default.
- W2765150911 cites W2044207982 @default.
- W2765150911 cites W2088221456 @default.
- W2765150911 cites W2124541940 @default.
- W2765150911 cites W2164278908 @default.
- W2765150911 cites W2296319761 @default.
- W2765150911 cites W2301983558 @default.
- W2765150911 cites W2304667012 @default.
- W2765150911 cites W2316369501 @default.
- W2765150911 cites W2510806995 @default.
- W2765150911 cites W2606176578 @default.
- W2765150911 cites W2619885667 @default.
- W2765150911 cites W2729157799 @default.
- W2765150911 cites W2766533971 @default.
- W2765150911 cites W2949205035 @default.
- W2765150911 cites W2951773851 @default.
- W2765150911 hasPublicationYear "2017" @default.
- W2765150911 type Work @default.
- W2765150911 sameAs 2765150911 @default.
- W2765150911 citedByCount "13" @default.
- W2765150911 countsByYear W27651509112017 @default.
- W2765150911 countsByYear W27651509112018 @default.
- W2765150911 countsByYear W27651509112019 @default.
- W2765150911 countsByYear W27651509112020 @default.
- W2765150911 countsByYear W27651509112021 @default.
- W2765150911 crossrefType "posted-content" @default.
- W2765150911 hasAuthorship W2765150911A5035869365 @default.
- W2765150911 hasAuthorship W2765150911A5061331093 @default.
- W2765150911 hasAuthorship W2765150911A5081468859 @default.
- W2765150911 hasAuthorship W2765150911A5086787265 @default.
- W2765150911 hasConcept C10138342 @default.
- W2765150911 hasConcept C106159729 @default.
- W2765150911 hasConcept C112680207 @default.
- W2765150911 hasConcept C114614502 @default.
- W2765150911 hasConcept C119857082 @default.
- W2765150911 hasConcept C127162648 @default.
- W2765150911 hasConcept C134306372 @default.
- W2765150911 hasConcept C145446738 @default.
- W2765150911 hasConcept C153258448 @default.
- W2765150911 hasConcept C162324750 @default.
- W2765150911 hasConcept C182306322 @default.
- W2765150911 hasConcept C189237950 @default.
- W2765150911 hasConcept C22324862 @default.
- W2765150911 hasConcept C2524010 @default.
- W2765150911 hasConcept C2777303404 @default.
- W2765150911 hasConcept C28826006 @default.
- W2765150911 hasConcept C2987642246 @default.
- W2765150911 hasConcept C31258907 @default.
- W2765150911 hasConcept C33923547 @default.
- W2765150911 hasConcept C41008148 @default.
- W2765150911 hasConcept C50522688 @default.
- W2765150911 hasConcept C50644808 @default.
- W2765150911 hasConcept C57869625 @default.
- W2765150911 hasConcept C72134830 @default.
- W2765150911 hasConcept C77553402 @default.
- W2765150911 hasConceptScore W2765150911C10138342 @default.
- W2765150911 hasConceptScore W2765150911C106159729 @default.
- W2765150911 hasConceptScore W2765150911C112680207 @default.
- W2765150911 hasConceptScore W2765150911C114614502 @default.
- W2765150911 hasConceptScore W2765150911C119857082 @default.
- W2765150911 hasConceptScore W2765150911C127162648 @default.
- W2765150911 hasConceptScore W2765150911C134306372 @default.
- W2765150911 hasConceptScore W2765150911C145446738 @default.
- W2765150911 hasConceptScore W2765150911C153258448 @default.
- W2765150911 hasConceptScore W2765150911C162324750 @default.
- W2765150911 hasConceptScore W2765150911C182306322 @default.
- W2765150911 hasConceptScore W2765150911C189237950 @default.
- W2765150911 hasConceptScore W2765150911C22324862 @default.
- W2765150911 hasConceptScore W2765150911C2524010 @default.
- W2765150911 hasConceptScore W2765150911C2777303404 @default.
- W2765150911 hasConceptScore W2765150911C28826006 @default.
- W2765150911 hasConceptScore W2765150911C2987642246 @default.
- W2765150911 hasConceptScore W2765150911C31258907 @default.
- W2765150911 hasConceptScore W2765150911C33923547 @default.
- W2765150911 hasConceptScore W2765150911C41008148 @default.
- W2765150911 hasConceptScore W2765150911C50522688 @default.
- W2765150911 hasConceptScore W2765150911C50644808 @default.
- W2765150911 hasConceptScore W2765150911C57869625 @default.
- W2765150911 hasConceptScore W2765150911C72134830 @default.
- W2765150911 hasConceptScore W2765150911C77553402 @default.
- W2765150911 hasLocation W27651509111 @default.
- W2765150911 hasOpenAccess W2765150911 @default.
- W2765150911 hasPrimaryLocation W27651509111 @default.
- W2765150911 hasRelatedWork W1505731132 @default.
- W2765150911 hasRelatedWork W1934819276 @default.
- W2765150911 hasRelatedWork W2009941369 @default.
- W2765150911 hasRelatedWork W2043093325 @default.
- W2765150911 hasRelatedWork W2292276170 @default.
- W2765150911 hasRelatedWork W2346058831 @default.
- W2765150911 hasRelatedWork W2534977743 @default.
- W2765150911 hasRelatedWork W2615384813 @default.