Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765178087> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2765178087 abstract "This paper makes use of diverse domains’ datasets to analyze the impact of image complexity and diversity on the task of transfer learning in deep neural networks. As the availability of labels and quality instances for several domains are still scarce, it is imperative to use the knowledge acquired from similar problems to improve classifier performance by transferring the learned parameters. We performed a statistical analysis through several experiments in which the convolutional neural networks (LeNet-5, AlexNet, VGG-11 and VGG-16) were trained and transferred to different target tasks layer by layer. We show that when working with complex low-quality images and small datasets, fine-tuning the transferred features learned from a low complexity source dataset gives the best results." @default.
- W2765178087 created "2017-11-10" @default.
- W2765178087 creator A5007184210 @default.
- W2765178087 creator A5045486347 @default.
- W2765178087 creator A5055046285 @default.
- W2765178087 creator A5086345001 @default.
- W2765178087 date "2017-01-01" @default.
- W2765178087 modified "2023-09-27" @default.
- W2765178087 title "The Impact of Dataset Complexity on Transfer Learning over Convolutional Neural Networks" @default.
- W2765178087 cites W1849277567 @default.
- W2765178087 cites W1986614398 @default.
- W2765178087 cites W2062118960 @default.
- W2765178087 cites W2097117768 @default.
- W2765178087 cites W2112796928 @default.
- W2765178087 cites W2135706187 @default.
- W2765178087 cites W2161381512 @default.
- W2765178087 cites W2194775991 @default.
- W2765178087 cites W2523168882 @default.
- W2765178087 doi "https://doi.org/10.1007/978-3-319-68612-7_66" @default.
- W2765178087 hasPublicationYear "2017" @default.
- W2765178087 type Work @default.
- W2765178087 sameAs 2765178087 @default.
- W2765178087 citedByCount "4" @default.
- W2765178087 countsByYear W27651780872019 @default.
- W2765178087 countsByYear W27651780872020 @default.
- W2765178087 countsByYear W27651780872021 @default.
- W2765178087 crossrefType "book-chapter" @default.
- W2765178087 hasAuthorship W2765178087A5007184210 @default.
- W2765178087 hasAuthorship W2765178087A5045486347 @default.
- W2765178087 hasAuthorship W2765178087A5055046285 @default.
- W2765178087 hasAuthorship W2765178087A5086345001 @default.
- W2765178087 hasConcept C108583219 @default.
- W2765178087 hasConcept C119857082 @default.
- W2765178087 hasConcept C150899416 @default.
- W2765178087 hasConcept C153180895 @default.
- W2765178087 hasConcept C154945302 @default.
- W2765178087 hasConcept C162324750 @default.
- W2765178087 hasConcept C178790620 @default.
- W2765178087 hasConcept C185592680 @default.
- W2765178087 hasConcept C187736073 @default.
- W2765178087 hasConcept C2779227376 @default.
- W2765178087 hasConcept C2780451532 @default.
- W2765178087 hasConcept C41008148 @default.
- W2765178087 hasConcept C50644808 @default.
- W2765178087 hasConcept C81363708 @default.
- W2765178087 hasConcept C95623464 @default.
- W2765178087 hasConceptScore W2765178087C108583219 @default.
- W2765178087 hasConceptScore W2765178087C119857082 @default.
- W2765178087 hasConceptScore W2765178087C150899416 @default.
- W2765178087 hasConceptScore W2765178087C153180895 @default.
- W2765178087 hasConceptScore W2765178087C154945302 @default.
- W2765178087 hasConceptScore W2765178087C162324750 @default.
- W2765178087 hasConceptScore W2765178087C178790620 @default.
- W2765178087 hasConceptScore W2765178087C185592680 @default.
- W2765178087 hasConceptScore W2765178087C187736073 @default.
- W2765178087 hasConceptScore W2765178087C2779227376 @default.
- W2765178087 hasConceptScore W2765178087C2780451532 @default.
- W2765178087 hasConceptScore W2765178087C41008148 @default.
- W2765178087 hasConceptScore W2765178087C50644808 @default.
- W2765178087 hasConceptScore W2765178087C81363708 @default.
- W2765178087 hasConceptScore W2765178087C95623464 @default.
- W2765178087 hasLocation W27651780871 @default.
- W2765178087 hasOpenAccess W2765178087 @default.
- W2765178087 hasPrimaryLocation W27651780871 @default.
- W2765178087 hasRelatedWork W2209990155 @default.
- W2765178087 hasRelatedWork W2732009153 @default.
- W2765178087 hasRelatedWork W2808896182 @default.
- W2765178087 hasRelatedWork W2898843852 @default.
- W2765178087 hasRelatedWork W2902690839 @default.
- W2765178087 hasRelatedWork W2908846145 @default.
- W2765178087 hasRelatedWork W2955784473 @default.
- W2765178087 hasRelatedWork W2963336383 @default.
- W2765178087 hasRelatedWork W2968323358 @default.
- W2765178087 hasRelatedWork W2980280361 @default.
- W2765178087 hasRelatedWork W2991608182 @default.
- W2765178087 hasRelatedWork W3011849609 @default.
- W2765178087 hasRelatedWork W3013095212 @default.
- W2765178087 hasRelatedWork W3014041368 @default.
- W2765178087 hasRelatedWork W3019513356 @default.
- W2765178087 hasRelatedWork W3023764908 @default.
- W2765178087 hasRelatedWork W3032732905 @default.
- W2765178087 hasRelatedWork W3117282899 @default.
- W2765178087 hasRelatedWork W3118457286 @default.
- W2765178087 hasRelatedWork W3124268183 @default.
- W2765178087 isParatext "false" @default.
- W2765178087 isRetracted "false" @default.
- W2765178087 magId "2765178087" @default.
- W2765178087 workType "book-chapter" @default.