Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765183969> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2765183969 abstract "To overcome the limitations of manual features and obtain the operating characteristics of the equipment in complex operation processes, different deep learning models have been utilized for industrial data, improving classification accuracy yet causing some other limitations meanwhile. In this paper, a deep hybrid model named Stochastic Convolutional and Deep Belief Network (SCDBN), which assembles unsupervised CNN with DBN, was proposed based on the modified CNN. By adding unsupervised components to deep learning methods, proposed model aims to promote the condition that the features extracted by supervised model rely on the training samples and own poor generality. The works of this paper mainly focus on: 1) STFT is used as a signal preprocessing method to create the input of CNN. 2) By means of stochastic kernels and averaging processing, unsupervised CNN is built for general rather than optimal features. 3) A hybrid model is constructed which combines unsupervised CNN with DBN to realize the goal of fault diagnosis. The proposed model is validated by bearing dataset from experiment, and the result has shown that it can obtain high accuracies in diagnosis. Additionally, the features extracted by unsupervised CNN present obvious divergence among different types of bearing data and good generalization ability compared with time domain features." @default.
- W2765183969 created "2017-11-10" @default.
- W2765183969 creator A5004379956 @default.
- W2765183969 creator A5010450555 @default.
- W2765183969 creator A5032844333 @default.
- W2765183969 creator A5087816899 @default.
- W2765183969 date "2017-07-01" @default.
- W2765183969 modified "2023-09-27" @default.
- W2765183969 title "Design and application of unsupervised convolutional neural networks integrated with deep belief networks for mechanical fault diagnosis" @default.
- W2765183969 cites W1677182931 @default.
- W2765183969 cites W2136922672 @default.
- W2765183969 cites W2195459533 @default.
- W2765183969 cites W2219903032 @default.
- W2765183969 cites W2247512861 @default.
- W2765183969 cites W2287029277 @default.
- W2765183969 cites W2317595875 @default.
- W2765183969 cites W2415594836 @default.
- W2765183969 cites W2440930599 @default.
- W2765183969 cites W2513828693 @default.
- W2765183969 cites W2546302380 @default.
- W2765183969 cites W2556013418 @default.
- W2765183969 cites W2572334665 @default.
- W2765183969 cites W2584994008 @default.
- W2765183969 cites W2744686084 @default.
- W2765183969 doi "https://doi.org/10.1109/phm.2017.8079169" @default.
- W2765183969 hasPublicationYear "2017" @default.
- W2765183969 type Work @default.
- W2765183969 sameAs 2765183969 @default.
- W2765183969 citedByCount "13" @default.
- W2765183969 countsByYear W27651839692019 @default.
- W2765183969 countsByYear W27651839692020 @default.
- W2765183969 countsByYear W27651839692021 @default.
- W2765183969 countsByYear W27651839692022 @default.
- W2765183969 crossrefType "proceedings-article" @default.
- W2765183969 hasAuthorship W2765183969A5004379956 @default.
- W2765183969 hasAuthorship W2765183969A5010450555 @default.
- W2765183969 hasAuthorship W2765183969A5032844333 @default.
- W2765183969 hasAuthorship W2765183969A5087816899 @default.
- W2765183969 hasConcept C101738243 @default.
- W2765183969 hasConcept C10551718 @default.
- W2765183969 hasConcept C108583219 @default.
- W2765183969 hasConcept C119857082 @default.
- W2765183969 hasConcept C134306372 @default.
- W2765183969 hasConcept C153180895 @default.
- W2765183969 hasConcept C154945302 @default.
- W2765183969 hasConcept C177148314 @default.
- W2765183969 hasConcept C33923547 @default.
- W2765183969 hasConcept C34736171 @default.
- W2765183969 hasConcept C41008148 @default.
- W2765183969 hasConcept C52622490 @default.
- W2765183969 hasConcept C8038995 @default.
- W2765183969 hasConcept C81363708 @default.
- W2765183969 hasConcept C97385483 @default.
- W2765183969 hasConceptScore W2765183969C101738243 @default.
- W2765183969 hasConceptScore W2765183969C10551718 @default.
- W2765183969 hasConceptScore W2765183969C108583219 @default.
- W2765183969 hasConceptScore W2765183969C119857082 @default.
- W2765183969 hasConceptScore W2765183969C134306372 @default.
- W2765183969 hasConceptScore W2765183969C153180895 @default.
- W2765183969 hasConceptScore W2765183969C154945302 @default.
- W2765183969 hasConceptScore W2765183969C177148314 @default.
- W2765183969 hasConceptScore W2765183969C33923547 @default.
- W2765183969 hasConceptScore W2765183969C34736171 @default.
- W2765183969 hasConceptScore W2765183969C41008148 @default.
- W2765183969 hasConceptScore W2765183969C52622490 @default.
- W2765183969 hasConceptScore W2765183969C8038995 @default.
- W2765183969 hasConceptScore W2765183969C81363708 @default.
- W2765183969 hasConceptScore W2765183969C97385483 @default.
- W2765183969 hasLocation W27651839691 @default.
- W2765183969 hasOpenAccess W2765183969 @default.
- W2765183969 hasPrimaryLocation W27651839691 @default.
- W2765183969 hasRelatedWork W2279398222 @default.
- W2765183969 hasRelatedWork W2391959412 @default.
- W2765183969 hasRelatedWork W2592385986 @default.
- W2765183969 hasRelatedWork W2772780115 @default.
- W2765183969 hasRelatedWork W2999805992 @default.
- W2765183969 hasRelatedWork W3082895349 @default.
- W2765183969 hasRelatedWork W3123344745 @default.
- W2765183969 hasRelatedWork W4299822940 @default.
- W2765183969 hasRelatedWork W4302303815 @default.
- W2765183969 hasRelatedWork W4327774331 @default.
- W2765183969 isParatext "false" @default.
- W2765183969 isRetracted "false" @default.
- W2765183969 magId "2765183969" @default.
- W2765183969 workType "article" @default.