Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765199202> ?p ?o ?g. }
- W2765199202 endingPage "186" @default.
- W2765199202 startingPage "173" @default.
- W2765199202 abstract "A major challenge in similarity/distance learning is attaining a strong measure which is close to human notions of similarity. This paper shows why the consideration of data distribution can yield a more effective similarity measure. In addition, the current work both introduces a new scalable similarity measure based on the posterior distribution of data and develops a practical algorithm that learns the proposed measure from the data. To address scalability in this algorithm, the observed data are assumed to have originated from low dimensional latent variables that are close to several subspaces. Other advantages of the currently proposed method include: (1) Providing a principled way to combine metrics in computing the similarity between new instances, unlike local metric learning methods. (2) Automatically identifying the real dimension of latent subspaces, by defining appropriate priors over the parameters of the system via a Bayesian framework. (3) Finding a better projection to low dimensional subspaces, by learning the noise of the latent variables on these subspaces. The present method is evaluated on various real datasets obtained from applications, such as face verification, handwritten digit and spoken letter recognition, network intrusion detection, and image classification. The experimental results confirm that the proposed method significantly outperforms other state-of-the-art metric learning methods on both small and large-scale datasets." @default.
- W2765199202 created "2017-11-10" @default.
- W2765199202 creator A5064885254 @default.
- W2765199202 creator A5069185272 @default.
- W2765199202 creator A5087615278 @default.
- W2765199202 date "2018-01-01" @default.
- W2765199202 modified "2023-10-14" @default.
- W2765199202 title "Sparse Bayesian similarity learning based on posterior distribution of data" @default.
- W2765199202 cites W2032942379 @default.
- W2765199202 cites W2044153604 @default.
- W2765199202 cites W2050201048 @default.
- W2765199202 cites W2061851712 @default.
- W2765199202 cites W2062112832 @default.
- W2765199202 cites W2063135797 @default.
- W2765199202 cites W2100659887 @default.
- W2765199202 cites W2112796928 @default.
- W2765199202 cites W2152756885 @default.
- W2765199202 cites W2157911873 @default.
- W2765199202 cites W2536305071 @default.
- W2765199202 cites W2964176323 @default.
- W2765199202 cites W4290043985 @default.
- W2765199202 cites W2030340820 @default.
- W2765199202 doi "https://doi.org/10.1016/j.engappai.2017.09.023" @default.
- W2765199202 hasPublicationYear "2018" @default.
- W2765199202 type Work @default.
- W2765199202 sameAs 2765199202 @default.
- W2765199202 citedByCount "4" @default.
- W2765199202 countsByYear W27651992022021 @default.
- W2765199202 countsByYear W27651992022022 @default.
- W2765199202 countsByYear W27651992022023 @default.
- W2765199202 crossrefType "journal-article" @default.
- W2765199202 hasAuthorship W2765199202A5064885254 @default.
- W2765199202 hasAuthorship W2765199202A5069185272 @default.
- W2765199202 hasAuthorship W2765199202A5087615278 @default.
- W2765199202 hasConcept C103278499 @default.
- W2765199202 hasConcept C107673813 @default.
- W2765199202 hasConcept C11413529 @default.
- W2765199202 hasConcept C115961682 @default.
- W2765199202 hasConcept C119857082 @default.
- W2765199202 hasConcept C12362212 @default.
- W2765199202 hasConcept C124101348 @default.
- W2765199202 hasConcept C144024400 @default.
- W2765199202 hasConcept C153180895 @default.
- W2765199202 hasConcept C154945302 @default.
- W2765199202 hasConcept C162324750 @default.
- W2765199202 hasConcept C176217482 @default.
- W2765199202 hasConcept C177769412 @default.
- W2765199202 hasConcept C21547014 @default.
- W2765199202 hasConcept C2524010 @default.
- W2765199202 hasConcept C2776517306 @default.
- W2765199202 hasConcept C2779304628 @default.
- W2765199202 hasConcept C2780009758 @default.
- W2765199202 hasConcept C33923547 @default.
- W2765199202 hasConcept C36289849 @default.
- W2765199202 hasConcept C41008148 @default.
- W2765199202 hasConcept C48044578 @default.
- W2765199202 hasConcept C57493831 @default.
- W2765199202 hasConcept C57830394 @default.
- W2765199202 hasConcept C77088390 @default.
- W2765199202 hasConceptScore W2765199202C103278499 @default.
- W2765199202 hasConceptScore W2765199202C107673813 @default.
- W2765199202 hasConceptScore W2765199202C11413529 @default.
- W2765199202 hasConceptScore W2765199202C115961682 @default.
- W2765199202 hasConceptScore W2765199202C119857082 @default.
- W2765199202 hasConceptScore W2765199202C12362212 @default.
- W2765199202 hasConceptScore W2765199202C124101348 @default.
- W2765199202 hasConceptScore W2765199202C144024400 @default.
- W2765199202 hasConceptScore W2765199202C153180895 @default.
- W2765199202 hasConceptScore W2765199202C154945302 @default.
- W2765199202 hasConceptScore W2765199202C162324750 @default.
- W2765199202 hasConceptScore W2765199202C176217482 @default.
- W2765199202 hasConceptScore W2765199202C177769412 @default.
- W2765199202 hasConceptScore W2765199202C21547014 @default.
- W2765199202 hasConceptScore W2765199202C2524010 @default.
- W2765199202 hasConceptScore W2765199202C2776517306 @default.
- W2765199202 hasConceptScore W2765199202C2779304628 @default.
- W2765199202 hasConceptScore W2765199202C2780009758 @default.
- W2765199202 hasConceptScore W2765199202C33923547 @default.
- W2765199202 hasConceptScore W2765199202C36289849 @default.
- W2765199202 hasConceptScore W2765199202C41008148 @default.
- W2765199202 hasConceptScore W2765199202C48044578 @default.
- W2765199202 hasConceptScore W2765199202C57493831 @default.
- W2765199202 hasConceptScore W2765199202C57830394 @default.
- W2765199202 hasConceptScore W2765199202C77088390 @default.
- W2765199202 hasLocation W27651992021 @default.
- W2765199202 hasOpenAccess W2765199202 @default.
- W2765199202 hasPrimaryLocation W27651992021 @default.
- W2765199202 hasRelatedWork W121350374 @default.
- W2765199202 hasRelatedWork W1992371859 @default.
- W2765199202 hasRelatedWork W2111173507 @default.
- W2765199202 hasRelatedWork W2319693127 @default.
- W2765199202 hasRelatedWork W2358805260 @default.
- W2765199202 hasRelatedWork W2606618787 @default.
- W2765199202 hasRelatedWork W3015424904 @default.
- W2765199202 hasRelatedWork W3027506937 @default.
- W2765199202 hasRelatedWork W3142162173 @default.
- W2765199202 hasRelatedWork W4248020907 @default.
- W2765199202 hasVolume "67" @default.