Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765205364> ?p ?o ?g. }
- W2765205364 endingPage "88" @default.
- W2765205364 startingPage "73" @default.
- W2765205364 abstract "Multivariate meta‐analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta‐analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta‐analysis require the knowledge of within‐study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random‐effects meta‐analysis. As within‐study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta‐analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta‐analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta‐analyses with a relatively large number of studies (eg, m ≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta‐analyses." @default.
- W2765205364 created "2017-11-10" @default.
- W2765205364 creator A5040942978 @default.
- W2765205364 creator A5052512997 @default.
- W2765205364 creator A5085462851 @default.
- W2765205364 date "2017-12-07" @default.
- W2765205364 modified "2023-10-12" @default.
- W2765205364 title "An improved method for bivariate meta-analysis when within-study correlations are unknown" @default.
- W2765205364 cites W12636511 @default.
- W2765205364 cites W1499249521 @default.
- W2765205364 cites W1643140812 @default.
- W2765205364 cites W1963760643 @default.
- W2765205364 cites W1966426717 @default.
- W2765205364 cites W1971536657 @default.
- W2765205364 cites W1981188819 @default.
- W2765205364 cites W1984935883 @default.
- W2765205364 cites W1985390432 @default.
- W2765205364 cites W2000297407 @default.
- W2765205364 cites W2037293300 @default.
- W2765205364 cites W2037593179 @default.
- W2765205364 cites W2043516533 @default.
- W2765205364 cites W2048104647 @default.
- W2765205364 cites W2058989213 @default.
- W2765205364 cites W2068869745 @default.
- W2765205364 cites W2088746366 @default.
- W2765205364 cites W2100089498 @default.
- W2765205364 cites W2110597233 @default.
- W2765205364 cites W2126602143 @default.
- W2765205364 cites W2127584866 @default.
- W2765205364 cites W2133169911 @default.
- W2765205364 cites W2144373793 @default.
- W2765205364 cites W2147527890 @default.
- W2765205364 cites W2149860264 @default.
- W2765205364 cites W2151133465 @default.
- W2765205364 cites W2164904769 @default.
- W2765205364 cites W2168202113 @default.
- W2765205364 cites W2171609584 @default.
- W2765205364 cites W2193889505 @default.
- W2765205364 cites W2317922289 @default.
- W2765205364 cites W2513881572 @default.
- W2765205364 cites W4246784033 @default.
- W2765205364 cites W4297918764 @default.
- W2765205364 doi "https://doi.org/10.1002/jrsm.1274" @default.
- W2765205364 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6071677" @default.
- W2765205364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29055096" @default.
- W2765205364 hasPublicationYear "2017" @default.
- W2765205364 type Work @default.
- W2765205364 sameAs 2765205364 @default.
- W2765205364 citedByCount "10" @default.
- W2765205364 countsByYear W27652053642019 @default.
- W2765205364 countsByYear W27652053642020 @default.
- W2765205364 countsByYear W27652053642021 @default.
- W2765205364 countsByYear W27652053642022 @default.
- W2765205364 countsByYear W27652053642023 @default.
- W2765205364 crossrefType "journal-article" @default.
- W2765205364 hasAuthorship W2765205364A5040942978 @default.
- W2765205364 hasAuthorship W2765205364A5052512997 @default.
- W2765205364 hasAuthorship W2765205364A5085462851 @default.
- W2765205364 hasBestOaLocation W27652053642 @default.
- W2765205364 hasConcept C105795698 @default.
- W2765205364 hasConcept C121955636 @default.
- W2765205364 hasConcept C126322002 @default.
- W2765205364 hasConcept C144133560 @default.
- W2765205364 hasConcept C149782125 @default.
- W2765205364 hasConcept C154945302 @default.
- W2765205364 hasConcept C161584116 @default.
- W2765205364 hasConcept C185429906 @default.
- W2765205364 hasConcept C196083921 @default.
- W2765205364 hasConcept C199163554 @default.
- W2765205364 hasConcept C2776214188 @default.
- W2765205364 hasConcept C33923547 @default.
- W2765205364 hasConcept C41008148 @default.
- W2765205364 hasConcept C64341305 @default.
- W2765205364 hasConcept C71924100 @default.
- W2765205364 hasConcept C95190672 @default.
- W2765205364 hasConceptScore W2765205364C105795698 @default.
- W2765205364 hasConceptScore W2765205364C121955636 @default.
- W2765205364 hasConceptScore W2765205364C126322002 @default.
- W2765205364 hasConceptScore W2765205364C144133560 @default.
- W2765205364 hasConceptScore W2765205364C149782125 @default.
- W2765205364 hasConceptScore W2765205364C154945302 @default.
- W2765205364 hasConceptScore W2765205364C161584116 @default.
- W2765205364 hasConceptScore W2765205364C185429906 @default.
- W2765205364 hasConceptScore W2765205364C196083921 @default.
- W2765205364 hasConceptScore W2765205364C199163554 @default.
- W2765205364 hasConceptScore W2765205364C2776214188 @default.
- W2765205364 hasConceptScore W2765205364C33923547 @default.
- W2765205364 hasConceptScore W2765205364C41008148 @default.
- W2765205364 hasConceptScore W2765205364C64341305 @default.
- W2765205364 hasConceptScore W2765205364C71924100 @default.
- W2765205364 hasConceptScore W2765205364C95190672 @default.
- W2765205364 hasFunder F4320332161 @default.
- W2765205364 hasIssue "1" @default.
- W2765205364 hasLocation W27652053641 @default.
- W2765205364 hasLocation W27652053642 @default.
- W2765205364 hasLocation W27652053643 @default.
- W2765205364 hasLocation W27652053644 @default.
- W2765205364 hasLocation W27652053645 @default.