Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765208640> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2765208640 abstract "The desire to use ever growing qualitative data sets of user generated content in the engineering design process in a computationally effective manner makes it increasingly necessary to draw representative samples. This work investigated the ability of alternative sampling algorithms to draw samples with conformance to characteristics of the original data set. Sampling methods investigated included: random sampling, interval sampling, fixed-increment (or systematic) sampling method, and stratified sampling. Data collected through the Vehicle Owner’s Questionnaire, a survey administered by the U.S. National Highway Traffic Safety Administration, is used as a case study throughout this paper. The paper demonstrates that existing statistical methods may be used to evaluate goodness of fit for samples drawn from large bodies of qualitative data. Evaluation of goodness of fit not only provides confidence that a sample is representative of the data set from which it is drawn, but also yields valuable real-time feedback during the sampling process. This investigation revealed two interesting and counterintuitive trends in sampling algorithm performance. The first is that larger sample sizes do not necessarily lead to improved goodness of fit. The second is that depending on the details of implementation, data cleansing may degrade performance of data sampling algorithms rather than improving it. This work illustrates the importance of aligning sampling procedures to data structures and validating the conformance of samples to characteristics of the larger data set to avoid drawing erroneous conclusions based on unexpectedly biased samples of data." @default.
- W2765208640 created "2017-11-10" @default.
- W2765208640 creator A5000267745 @default.
- W2765208640 creator A5011052056 @default.
- W2765208640 creator A5021348586 @default.
- W2765208640 creator A5038888244 @default.
- W2765208640 creator A5071741959 @default.
- W2765208640 date "2017-08-06" @default.
- W2765208640 modified "2023-09-26" @default.
- W2765208640 title "Evaluating Sampling Methods for Reusing Knowledge From Large and Ill-Structured Qualitative Data Sets" @default.
- W2765208640 doi "https://doi.org/10.1115/detc2017-67964" @default.
- W2765208640 hasPublicationYear "2017" @default.
- W2765208640 type Work @default.
- W2765208640 sameAs 2765208640 @default.
- W2765208640 citedByCount "0" @default.
- W2765208640 crossrefType "proceedings-article" @default.
- W2765208640 hasAuthorship W2765208640A5000267745 @default.
- W2765208640 hasAuthorship W2765208640A5011052056 @default.
- W2765208640 hasAuthorship W2765208640A5021348586 @default.
- W2765208640 hasAuthorship W2765208640A5038888244 @default.
- W2765208640 hasAuthorship W2765208640A5071741959 @default.
- W2765208640 hasConcept C106131492 @default.
- W2765208640 hasConcept C127413603 @default.
- W2765208640 hasConcept C140779682 @default.
- W2765208640 hasConcept C206588197 @default.
- W2765208640 hasConcept C2522767166 @default.
- W2765208640 hasConcept C31972630 @default.
- W2765208640 hasConcept C41008148 @default.
- W2765208640 hasConcept C548081761 @default.
- W2765208640 hasConceptScore W2765208640C106131492 @default.
- W2765208640 hasConceptScore W2765208640C127413603 @default.
- W2765208640 hasConceptScore W2765208640C140779682 @default.
- W2765208640 hasConceptScore W2765208640C206588197 @default.
- W2765208640 hasConceptScore W2765208640C2522767166 @default.
- W2765208640 hasConceptScore W2765208640C31972630 @default.
- W2765208640 hasConceptScore W2765208640C41008148 @default.
- W2765208640 hasConceptScore W2765208640C548081761 @default.
- W2765208640 hasLocation W27652086401 @default.
- W2765208640 hasOpenAccess W2765208640 @default.
- W2765208640 hasPrimaryLocation W27652086401 @default.
- W2765208640 hasRelatedWork W1645284382 @default.
- W2765208640 hasRelatedWork W191064057 @default.
- W2765208640 hasRelatedWork W1969571455 @default.
- W2765208640 hasRelatedWork W1990295245 @default.
- W2765208640 hasRelatedWork W2023695588 @default.
- W2765208640 hasRelatedWork W2053542958 @default.
- W2765208640 hasRelatedWork W2078954681 @default.
- W2765208640 hasRelatedWork W2102117000 @default.
- W2765208640 hasRelatedWork W2128514552 @default.
- W2765208640 hasRelatedWork W2153720648 @default.
- W2765208640 hasRelatedWork W2263806010 @default.
- W2765208640 hasRelatedWork W2488974360 @default.
- W2765208640 hasRelatedWork W2888832404 @default.
- W2765208640 hasRelatedWork W2910158638 @default.
- W2765208640 hasRelatedWork W2940239237 @default.
- W2765208640 hasRelatedWork W3006215230 @default.
- W2765208640 hasRelatedWork W3111112492 @default.
- W2765208640 hasRelatedWork W3124501711 @default.
- W2765208640 hasRelatedWork W1570953513 @default.
- W2765208640 hasRelatedWork W2102497735 @default.
- W2765208640 isParatext "false" @default.
- W2765208640 isRetracted "false" @default.
- W2765208640 magId "2765208640" @default.
- W2765208640 workType "article" @default.