Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765212213> ?p ?o ?g. }
- W2765212213 endingPage "e4352" @default.
- W2765212213 startingPage "e4352" @default.
- W2765212213 abstract "Job scheduling is an old topic in High-Performance Computing (HPC), and it is more and more studied in data centers. Large data centers are often split into separate partitions for cloud computing and HPC; each partition normally has its specific scheduler. The possibility of migrating jobs from the HPC partition to the cloud one is a topic widely discussed in the literature. However, job migration from cloud to HPC is a much less explored topic. Nevertheless, such migration may be useful in many situations, in particular when the HPC platform has a low resource usage level, and the cloud usage level is high. A large number of jobs that could migrate from the cloud to the HPC partition may be observed in Google data center workloads. Job scheduling using overbooking strategy is seen as the main reason for the high resource usage level in clouds. However, overbooking can lead to a high rate of rescheduling and job dumping, which potentially causes response time violations. This work shows that HPC platforms can host and execute some cloud jobs with low interference in HPC jobs and a low number of response time violations. We introduce the definition of a cloud-HPC convergence area and propose a job scheduling strategy for it, aiming at reducing the number of response time violations of cloud jobs without interfering with HPC jobs execution. Our proposal is formally defined and then evaluated in different execution scenarios, using the SimGrid simulation framework, with workload data from production HPC grid. The experimental results show that often, there is a large number of empty areas in the scheduling plan of HPC platforms, which makes it possible to allocate cloud jobs by backfilling. This is due to the sparse HPC job submission pattern and the low resource usage level in some HPC platforms. One performed simulation scenario considered a set of 11K parallel HPC jobs running on a 2560-processor platform having an average resource usage level of 38.0%. The proposed convergence scheduler succeeded to inject around 267K cloud jobs in the HPC platform, with a response time violation rate under 0.00094% for such jobs, considering 80 processors in the convergence area and no effects on the HPC workload. This experiment considered cloud jobs based on job features of Google public cloud workloads, with a processing time slack factor of 1.25 (which is considered as high priority in the Google cloud SLA—Service Level Agreement). Usually, most cloud jobs show a slack factor higher than 1.25 (most cloud jobs are medium or low priority). The same simulation, repeated with a higher slack factor (4), showed no response time violations." @default.
- W2765212213 created "2017-11-10" @default.
- W2765212213 creator A5017327684 @default.
- W2765212213 creator A5049431434 @default.
- W2765212213 creator A5054131164 @default.
- W2765212213 creator A5057645081 @default.
- W2765212213 date "2017-11-02" @default.
- W2765212213 modified "2023-10-18" @default.
- W2765212213 title "Reducing the number of response time service level objective violations by a cloud-HPC convergence scheduler" @default.
- W2765212213 cites W1599248213 @default.
- W2765212213 cites W1965174039 @default.
- W2765212213 cites W1970286891 @default.
- W2765212213 cites W1978381155 @default.
- W2765212213 cites W1993644754 @default.
- W2765212213 cites W1994739878 @default.
- W2765212213 cites W2010485870 @default.
- W2765212213 cites W2010644199 @default.
- W2765212213 cites W2013130191 @default.
- W2765212213 cites W2013472408 @default.
- W2765212213 cites W2018528270 @default.
- W2765212213 cites W2019663004 @default.
- W2765212213 cites W2030709318 @default.
- W2765212213 cites W2031679758 @default.
- W2765212213 cites W2034279788 @default.
- W2765212213 cites W2054661784 @default.
- W2765212213 cites W2089269509 @default.
- W2765212213 cites W2105947650 @default.
- W2765212213 cites W2108905989 @default.
- W2765212213 cites W2111556044 @default.
- W2765212213 cites W2120422789 @default.
- W2765212213 cites W2120638704 @default.
- W2765212213 cites W2130241311 @default.
- W2765212213 cites W2133132768 @default.
- W2765212213 cites W2136510202 @default.
- W2765212213 cites W2148598537 @default.
- W2765212213 cites W2149206167 @default.
- W2765212213 cites W2150074609 @default.
- W2765212213 cites W2155178858 @default.
- W2765212213 cites W2155553140 @default.
- W2765212213 cites W2167401105 @default.
- W2765212213 cites W2254253446 @default.
- W2765212213 cites W2289698129 @default.
- W2765212213 cites W2294856684 @default.
- W2765212213 cites W2543215945 @default.
- W2765212213 cites W2586396889 @default.
- W2765212213 cites W3140263088 @default.
- W2765212213 cites W784101583 @default.
- W2765212213 doi "https://doi.org/10.1002/cpe.4352" @default.
- W2765212213 hasPublicationYear "2017" @default.
- W2765212213 type Work @default.
- W2765212213 sameAs 2765212213 @default.
- W2765212213 citedByCount "4" @default.
- W2765212213 countsByYear W27652122132018 @default.
- W2765212213 countsByYear W27652122132019 @default.
- W2765212213 countsByYear W27652122132021 @default.
- W2765212213 crossrefType "journal-article" @default.
- W2765212213 hasAuthorship W2765212213A5017327684 @default.
- W2765212213 hasAuthorship W2765212213A5049431434 @default.
- W2765212213 hasAuthorship W2765212213A5054131164 @default.
- W2765212213 hasAuthorship W2765212213A5057645081 @default.
- W2765212213 hasConcept C111873713 @default.
- W2765212213 hasConcept C111919701 @default.
- W2765212213 hasConcept C114614502 @default.
- W2765212213 hasConcept C120314980 @default.
- W2765212213 hasConcept C153740404 @default.
- W2765212213 hasConcept C162324750 @default.
- W2765212213 hasConcept C19012869 @default.
- W2765212213 hasConcept C206729178 @default.
- W2765212213 hasConcept C21547014 @default.
- W2765212213 hasConcept C2778476105 @default.
- W2765212213 hasConcept C33923547 @default.
- W2765212213 hasConcept C41008148 @default.
- W2765212213 hasConcept C42812 @default.
- W2765212213 hasConcept C79974875 @default.
- W2765212213 hasConcept C83283714 @default.
- W2765212213 hasConceptScore W2765212213C111873713 @default.
- W2765212213 hasConceptScore W2765212213C111919701 @default.
- W2765212213 hasConceptScore W2765212213C114614502 @default.
- W2765212213 hasConceptScore W2765212213C120314980 @default.
- W2765212213 hasConceptScore W2765212213C153740404 @default.
- W2765212213 hasConceptScore W2765212213C162324750 @default.
- W2765212213 hasConceptScore W2765212213C19012869 @default.
- W2765212213 hasConceptScore W2765212213C206729178 @default.
- W2765212213 hasConceptScore W2765212213C21547014 @default.
- W2765212213 hasConceptScore W2765212213C2778476105 @default.
- W2765212213 hasConceptScore W2765212213C33923547 @default.
- W2765212213 hasConceptScore W2765212213C41008148 @default.
- W2765212213 hasConceptScore W2765212213C42812 @default.
- W2765212213 hasConceptScore W2765212213C79974875 @default.
- W2765212213 hasConceptScore W2765212213C83283714 @default.
- W2765212213 hasIssue "12" @default.
- W2765212213 hasLocation W27652122131 @default.
- W2765212213 hasLocation W27652122132 @default.
- W2765212213 hasLocation W27652122133 @default.
- W2765212213 hasOpenAccess W2765212213 @default.
- W2765212213 hasPrimaryLocation W27652122131 @default.
- W2765212213 hasRelatedWork W2084814071 @default.
- W2765212213 hasRelatedWork W2166359223 @default.