Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765246101> ?p ?o ?g. }
- W2765246101 abstract "Asymptotically-optimal motion planners such as RRT* have been shown to incrementally approximate the shortest path between start and goal states. Once an initial solution is found, their performance can be dramatically improved by restricting subsequent samples to regions of the state space that can potentially improve the current solution. When the motion planning problem lies in a Euclidean space, this region $X_{inf}$, called the informed set, can be sampled directly. However, when planning with differential constraints in non-Euclidean state spaces, no analytic solutions exists to sampling $X_{inf}$ directly. State-of-the-art approaches to sampling $X_{inf}$ in such domains such as Hierarchical Rejection Sampling (HRS) may still be slow in high-dimensional state space. This may cause the planning algorithm to spend most of its time trying to produces samples in $X_{inf}$ rather than explore it. In this paper, we suggest an alternative approach to produce samples in the informed set $X_{inf}$ for a wide range of settings. Our main insight is to recast this problem as one of sampling uniformly within the sub-level-set of an implicit non-convex function. This recasting enables us to apply Monte Carlo sampling methods, used very effectively in the Machine Learning and Optimization communities, to solve our problem. We show for a wide range of scenarios that using our sampler can accelerate the convergence rate to high-quality solutions in high-dimensional problems." @default.
- W2765246101 created "2017-11-10" @default.
- W2765246101 creator A5022289461 @default.
- W2765246101 creator A5051828246 @default.
- W2765246101 creator A5057008378 @default.
- W2765246101 creator A5077719529 @default.
- W2765246101 creator A5078885681 @default.
- W2765246101 date "2017-10-17" @default.
- W2765246101 modified "2023-09-25" @default.
- W2765246101 title "Generalizing Informed Sampling for Asymptotically Optimal Sampling-based Kinodynamic Planning via Markov Chain Monte Carlo" @default.
- W2765246101 cites W1509540129 @default.
- W2765246101 cites W1578640434 @default.
- W2765246101 cites W1937587174 @default.
- W2765246101 cites W1963969090 @default.
- W2765246101 cites W1971086298 @default.
- W2765246101 cites W1976930960 @default.
- W2765246101 cites W1993282304 @default.
- W2765246101 cites W2000359213 @default.
- W2765246101 cites W2032006356 @default.
- W2765246101 cites W2033491515 @default.
- W2765246101 cites W2042613867 @default.
- W2765246101 cites W2046106152 @default.
- W2765246101 cites W2108207895 @default.
- W2765246101 cites W2108232656 @default.
- W2765246101 cites W2116855570 @default.
- W2765246101 cites W2124455817 @default.
- W2765246101 cites W2125299871 @default.
- W2765246101 cites W2128990851 @default.
- W2765246101 cites W2135194391 @default.
- W2765246101 cites W2143826757 @default.
- W2765246101 cites W2147497140 @default.
- W2765246101 cites W2166077797 @default.
- W2765246101 cites W2278842421 @default.
- W2765246101 cites W2410119929 @default.
- W2765246101 cites W2577354006 @default.
- W2765246101 cites W2611243847 @default.
- W2765246101 cites W3023788998 @default.
- W2765246101 cites W3103346840 @default.
- W2765246101 cites W568942680 @default.
- W2765246101 doi "https://doi.org/10.48550/arxiv.1710.06092" @default.
- W2765246101 hasPublicationYear "2017" @default.
- W2765246101 type Work @default.
- W2765246101 sameAs 2765246101 @default.
- W2765246101 citedByCount "2" @default.
- W2765246101 countsByYear W27652461012017 @default.
- W2765246101 countsByYear W27652461012018 @default.
- W2765246101 crossrefType "posted-content" @default.
- W2765246101 hasAuthorship W2765246101A5022289461 @default.
- W2765246101 hasAuthorship W2765246101A5051828246 @default.
- W2765246101 hasAuthorship W2765246101A5057008378 @default.
- W2765246101 hasAuthorship W2765246101A5077719529 @default.
- W2765246101 hasAuthorship W2765246101A5078885681 @default.
- W2765246101 hasBestOaLocation W27652461011 @default.
- W2765246101 hasConcept C105795698 @default.
- W2765246101 hasConcept C106131492 @default.
- W2765246101 hasConcept C111350023 @default.
- W2765246101 hasConcept C11413529 @default.
- W2765246101 hasConcept C126255220 @default.
- W2765246101 hasConcept C140779682 @default.
- W2765246101 hasConcept C154945302 @default.
- W2765246101 hasConcept C159985019 @default.
- W2765246101 hasConcept C162324750 @default.
- W2765246101 hasConcept C177264268 @default.
- W2765246101 hasConcept C181789720 @default.
- W2765246101 hasConcept C186450821 @default.
- W2765246101 hasConcept C192562407 @default.
- W2765246101 hasConcept C19499675 @default.
- W2765246101 hasConcept C199360897 @default.
- W2765246101 hasConcept C202444582 @default.
- W2765246101 hasConcept C204323151 @default.
- W2765246101 hasConcept C2777303404 @default.
- W2765246101 hasConcept C31972630 @default.
- W2765246101 hasConcept C33923547 @default.
- W2765246101 hasConcept C41008148 @default.
- W2765246101 hasConcept C48103436 @default.
- W2765246101 hasConcept C50522688 @default.
- W2765246101 hasConcept C52740198 @default.
- W2765246101 hasConcept C72434380 @default.
- W2765246101 hasConcept C81074085 @default.
- W2765246101 hasConcept C90509273 @default.
- W2765246101 hasConcept C98763669 @default.
- W2765246101 hasConceptScore W2765246101C105795698 @default.
- W2765246101 hasConceptScore W2765246101C106131492 @default.
- W2765246101 hasConceptScore W2765246101C111350023 @default.
- W2765246101 hasConceptScore W2765246101C11413529 @default.
- W2765246101 hasConceptScore W2765246101C126255220 @default.
- W2765246101 hasConceptScore W2765246101C140779682 @default.
- W2765246101 hasConceptScore W2765246101C154945302 @default.
- W2765246101 hasConceptScore W2765246101C159985019 @default.
- W2765246101 hasConceptScore W2765246101C162324750 @default.
- W2765246101 hasConceptScore W2765246101C177264268 @default.
- W2765246101 hasConceptScore W2765246101C181789720 @default.
- W2765246101 hasConceptScore W2765246101C186450821 @default.
- W2765246101 hasConceptScore W2765246101C192562407 @default.
- W2765246101 hasConceptScore W2765246101C19499675 @default.
- W2765246101 hasConceptScore W2765246101C199360897 @default.
- W2765246101 hasConceptScore W2765246101C202444582 @default.
- W2765246101 hasConceptScore W2765246101C204323151 @default.
- W2765246101 hasConceptScore W2765246101C2777303404 @default.
- W2765246101 hasConceptScore W2765246101C31972630 @default.