Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765247622> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2765247622 abstract "Meta-analysis in the health sciences combines evidence from multiple studies to derive stronger conclusions about the efficacy of treatments. In the process of data extraction from published papers, it is extremely common for the required data to be ambiguous, incomplete or missing. We consider the case of meta-analysis of odds-ratios with unknown number of events and meta-analysis of mean differences with missing standard errors. Existing approaches consist of computing best-estimates for the missing values then feeding them into the meta-analysis as extracted data without accounting for the uncertainty of the computations. These naive approaches lead to over-certain results and potentially inaccurate conclusions. Meta-analysis of odds-ratios assumes binomially distributed numbers of events in each treatment group and requires extracted number of events, which are often not available due to loss to follow-up. Common practice consists of inferring the probability of survival from measurements of the Kaplan Meier survival plot and then using it to infer the number of deaths. We propose the Uncertain Reading-Estimated Events model to construct each study's contribution to the meta-analysis separately using the data available for extraction. In our meta-analysis comparing CABG and PCI for ULMCA stenosis, accounting for the uncertainty results in increased standard deviations of the log-odds as compared to a naive meta-analysis that assumes ideal extracted data, equivalent to a reduction of the overall sample size of 43% in our example. Simulations show that meta-analysis based on the observed number of deaths lead to biased estimates while our model does not. Meta-analysis of mean differences requires extracted mean differences and their standard errors (SE). However, missing standard errors are pervasive in publications. An algebraic computation to recover the missing SE utilizes the baseline and follow-up standard deviations, and correlations, which are also typically missing. Traditional approaches, that have not been theoretically derived, replace missing SEs with various single-value imputations. We formally derive the Uncertain Standard Error Bayesian model to accommodate multiple patterns of missingness in the standard deviations. In our meta-analysis comparing home monitoring blood pressure to usual care, accounting for the uncertainty results in larger posterior SEs compared to the traditional approaches." @default.
- W2765247622 created "2017-11-10" @default.
- W2765247622 creator A5034277843 @default.
- W2765247622 date "2015-01-01" @default.
- W2765247622 modified "2023-09-27" @default.
- W2765247622 title "Uncertainty in Meta-Analysis: Bridging the Divide Between Ideal and Available Extracted Data - eScholarship" @default.
- W2765247622 hasPublicationYear "2015" @default.
- W2765247622 type Work @default.
- W2765247622 sameAs 2765247622 @default.
- W2765247622 citedByCount "0" @default.
- W2765247622 crossrefType "journal-article" @default.
- W2765247622 hasAuthorship W2765247622A5034277843 @default.
- W2765247622 hasConcept C105795698 @default.
- W2765247622 hasConcept C124101348 @default.
- W2765247622 hasConcept C126322002 @default.
- W2765247622 hasConcept C129848803 @default.
- W2765247622 hasConcept C156957248 @default.
- W2765247622 hasConcept C17744445 @default.
- W2765247622 hasConcept C199539241 @default.
- W2765247622 hasConcept C2777466982 @default.
- W2765247622 hasConcept C2779473830 @default.
- W2765247622 hasConcept C33923547 @default.
- W2765247622 hasConcept C41008148 @default.
- W2765247622 hasConcept C44249647 @default.
- W2765247622 hasConcept C71924100 @default.
- W2765247622 hasConcept C9357733 @default.
- W2765247622 hasConcept C95190672 @default.
- W2765247622 hasConceptScore W2765247622C105795698 @default.
- W2765247622 hasConceptScore W2765247622C124101348 @default.
- W2765247622 hasConceptScore W2765247622C126322002 @default.
- W2765247622 hasConceptScore W2765247622C129848803 @default.
- W2765247622 hasConceptScore W2765247622C156957248 @default.
- W2765247622 hasConceptScore W2765247622C17744445 @default.
- W2765247622 hasConceptScore W2765247622C199539241 @default.
- W2765247622 hasConceptScore W2765247622C2777466982 @default.
- W2765247622 hasConceptScore W2765247622C2779473830 @default.
- W2765247622 hasConceptScore W2765247622C33923547 @default.
- W2765247622 hasConceptScore W2765247622C41008148 @default.
- W2765247622 hasConceptScore W2765247622C44249647 @default.
- W2765247622 hasConceptScore W2765247622C71924100 @default.
- W2765247622 hasConceptScore W2765247622C9357733 @default.
- W2765247622 hasConceptScore W2765247622C95190672 @default.
- W2765247622 hasLocation W27652476221 @default.
- W2765247622 hasOpenAccess W2765247622 @default.
- W2765247622 hasPrimaryLocation W27652476221 @default.
- W2765247622 hasRelatedWork W2148361291 @default.
- W2765247622 hasRelatedWork W2279579429 @default.
- W2765247622 hasRelatedWork W2786414695 @default.
- W2765247622 hasRelatedWork W2787406716 @default.
- W2765247622 hasRelatedWork W2888732220 @default.
- W2765247622 hasRelatedWork W2890863333 @default.
- W2765247622 hasRelatedWork W2909849393 @default.
- W2765247622 hasRelatedWork W2921134459 @default.
- W2765247622 hasRelatedWork W2946935261 @default.
- W2765247622 hasRelatedWork W2952542242 @default.
- W2765247622 hasRelatedWork W3011730308 @default.
- W2765247622 hasRelatedWork W3023744026 @default.
- W2765247622 hasRelatedWork W3033972331 @default.
- W2765247622 hasRelatedWork W3046496131 @default.
- W2765247622 hasRelatedWork W3047720214 @default.
- W2765247622 hasRelatedWork W3099711662 @default.
- W2765247622 hasRelatedWork W3167135753 @default.
- W2765247622 hasRelatedWork W3186411542 @default.
- W2765247622 hasRelatedWork W84201711 @default.
- W2765247622 isParatext "false" @default.
- W2765247622 isRetracted "false" @default.
- W2765247622 magId "2765247622" @default.
- W2765247622 workType "article" @default.