Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765279432> ?p ?o ?g. }
- W2765279432 endingPage "632" @default.
- W2765279432 startingPage "623" @default.
- W2765279432 abstract "No AccessJournal of UrologyReview Article1 Mar 2018Personalized Intervention in Monogenic Stone Formers Lucas J. Policastro, Subodh J. Saggi, David S. Goldfarb, and Jeffrey P. Weiss Lucas J. PolicastroLucas J. Policastro Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York More articles by this author , Subodh J. SaggiSubodh J. Saggi Department of Nephrology, SUNY Downstate Medical Center, Brooklyn, New York More articles by this author , David S. GoldfarbDavid S. Goldfarb Nephrology Section, NY Harbor VA Medical Center, New York, New York Nephrology Division, New York University School of Medicine, New York, New York Supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Center for Advancing Translational Sciences. Financial interest and/or other relationship with Allena, AstraZeneca, Cymabay, Ironwood, Revive and Ravine Group. More articles by this author , and Jeffrey P. WeissJeffrey P. Weiss Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York Urology Service, NY Harbor VA Medical Center, New York, New York Financial interest and/or other relationship with Ferring, Pfizer and Allergan. More articles by this author View All Author Informationhttps://doi.org/10.1016/j.juro.2017.09.143AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Treatment of a first-time renal stone consists of acute management followed by medical efforts to prevent stone recurrence. Although nephrolithiasis is roughly 50% heritable, the presence of a family history usually does not affect treatment since most stone disease is regarded as polygenic, ie not attributable to a single gene. Recent evidence has suggested that single mutations could be responsible for a larger proportion of renal stones than previously thought. This intriguing possibility holds the potential to change the management paradigm in stone prevention from metabolically directed therapy to more specific approaches informed by genetic screening and testing. This review synthesizes new findings concerning monogenic kidney stone disease, and provides a concise and clinically useful reference for monogenic causes. It is expected that increased awareness of these etiologies will lead to increased use of genetic testing in recurrent stone formers and further research into the prevalence of monogenic stone disease. Materials and Methods: We assembled a complete list of genes known to cause or influence nephrolithiasis based on recent reviews and commentaries. We then comprehensively searched PubMed® and Google Scholar™ for all research on each gene having a pertinent role in nephrolithiasis. We determined which genes could be considered monogenic causes of nephrolithiasis. One gene, ALPL, was excluded since nephrolithiasis is a relatively minor aspect of the disorder associated with the gene (hypophosphatasia). We summarized selected studies and assembled clinically relevant details. Results: A total of 27 genes were reviewed in terms of recent findings, mode of inheritance of stone disease, known or supposed prevalence of mutations in the general population of stone patients and specific therapies or considerations. Conclusions: There is a distinct opportunity for increased use of genetic testing to improve the lives of pediatric and adult stone patients. Several genes first reported in association with rare disease may be loci for novel mutations, heterozygous disease and forme frustes as causes of stones in the broader population. Cases of idiopathic nephrolithiasis should be considered as potentially having a monogenic basis. References 1 : The role of the 24-hour urine collection in the prevention of kidney stone recurrence. J Urol2017; 197: 1084. Link, Google Scholar 2 : Progress in understanding the genetics of calcium-containing nephrolithiasis. J Am Soc Nephrol2017; 28: 748. Google Scholar 3 : The role of the microbiome in kidney stone formation. Int J Surg2016; 36: 607. Google Scholar 4 : Segregation of urine calcium excretion in families ascertained for nephrolithiasis: evidence for a major gene. Kidney Int2005; 68: 966. Google Scholar 5 : A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int2005; 67: 1053. Google Scholar 6 : Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol2015; 26: 543. Google Scholar 7 : Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol2016; 11: 664. Google Scholar 8 : Tubular and genetic disorders associated with kidney stones. Urolithiasis2017; 45: 127. Google Scholar 9 : When to suspect a genetic disorder in a patient with renal stones, and why. Nephrol Dial Transplant2013; 28: 811. Google Scholar 10 : The need for genetic study to diagnose some cases of distal renal tubular acidosis. Nefrologia2016; 36: 552. Google Scholar 11 : Autosomal dominant distal renal tubular acidosis caused by a mutation in the anion exchanger 1 gene in a Japanese family. CEN Case Rep2015; 4: 218. Google Scholar 12 : Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am J Physiol Renal Physiol2014; 307: F1063. Google Scholar 13 : The vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J Am Soc Nephrol2016; 27: 1544. Google Scholar 14 : Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol2016; 29: 715. Google Scholar 15 : Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: a cross-sectional study. Bone2015; 81: 89. Google Scholar 16 : Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab2012; 97: E423. Google Scholar 17 : Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin Kidney J2015; 8: 453. Google Scholar 18 : Clinical and biochemical phenotypes of adults with monoallelic and biallelic CYP24A1 mutations: evidence of gene dose effect. Osteoporos Int2016; 27: 3121. Google Scholar 19 : Take another CYP: confirming a novel mechanism for “idiopathic” hypercalcemia. J Clin Endocrinol Metab2012; 97: 768. Google Scholar 20 : Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS One2015; 10: e0137350. Google Scholar 21 : Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology2000; 141: 2658. Google Scholar 22 : Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol2013; 28: 1923. Google Scholar 23 : Heterozygous cystinuria and urinary lithiasis. Am J Med Genet1985; 22: 703. Google Scholar 24 : Cystinuria revisited: presentations with calcium-containing stones demands vigilance and screening in the stone clinic. Med Surg Urol2014; 3: 140. Google Scholar 25 : Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: presentation as hypercalciuria and nephrolithiasis. J Clin Endocrinol Metab2009; 94: 4433. Google Scholar 26 : Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol2014; 25: 2366. Google Scholar 27 : Late-onset hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to mutation of SLC34A3/NPT2c. Bone2016; 97: 15. Google Scholar 28 : Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol2016; 27: 604. Google Scholar 29 : Common and rare variants associated with kidney stones and biochemical traits. Nat Commun2015; 6: 7975. Google Scholar 30 : Convergent signaling pathways regulate parathyroid hormone and fibroblast growth factor-23 action on NPT2A-mediated phosphate transport. J Biol Chem2016; 291: 18632. Google Scholar 31 : The primary hyperoxalurias: a practical approach to diagnosis and treatment. Int J Surg2016; 36: 649. Google Scholar 32 : Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review. BMC Pediatr2014; 14: 73. Google Scholar 33 : Hereditary renal hypouricemia: a new role for allopurinol?. Am J Med2014; 127: e3. Google Scholar 34 : Xanthine urolithiasis. Urology2006; 67: 1084.e9. Google Scholar 35 : Classical xanthinuria: a rare cause of pediatric urolithiasis. Turk J Urol2013; 39: 274. Google Scholar 36 : Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int1995; 47: 1419. Google Scholar 37 : Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol2001; 12: 1872. Google Scholar 38 : Claudins and mineral metabolism. Curr Opin Nephrol Hypertens2016; 25: 308. Google Scholar 39 : Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet2009; 41: 926. Google Scholar 40 : Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia—a German survey. Clin Endocrinol (Oxf)2011; 75: 760. Google Scholar 41 : Activating calcium-sensing receptor mutations: prospects for future treatment with calcilytics. Trends Endocrinol Metab2016; 27: 643. Google Scholar 42 : Calcium-sensing-related gene mutations in hypercalcaemic hypocalciuric patients as differential diagnosis from primary hyperparathyroidism: detection of two novel inactivating mutations in an Italian population. Nephrol Dial Transplant2014; 29: 1902. Google Scholar 43 : Proteinuria in Dent disease: a review of the literature. Pediatr Nephrol2016; 10.1007/s00467-016-3499-x. Crossref, Google Scholar 44 : Bartter syndrome type 3: an unusual cause of nephrolithiasis. Nephrol Dial Transplant2002; 17: 521. Google Scholar 45 : Patients with biallelic mutations in the chloride channel gene CLCNKB: long-term management and outcome. Am J Kidney Dis2007; 49: 91. Google Scholar 46 : Phosphoribosylpyrophosphate synthetase superactivity. GeneReviews® 2015. Available at https://www.ncbi.nlm.nih.gov/books/NBK1973/. Accessed March 28, 2017. Google Scholar 47 : Mutations in SLC26A1 cause nephrolithiasis. Am J Hum Genet2016; 98: 1228. Google Scholar 48 : Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest2010; 120: 706. Google Scholar 49 : Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab2002; 87: 1476. Google Scholar © 2018 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byAssimos D (2020) Re: Claudin-2 Deficiency Associates with Hypercalciuria in Mice and Human Kidney Stone DiseaseJournal of Urology, VOL. 204, NO. 2, (379-380), Online publication date: 1-Aug-2020.Assimos D (2019) Re: Juvenile Onset IIH and CYP24A1 MutationsJournal of Urology, VOL. 201, NO. 6, (1047-1048), Online publication date: 1-Jun-2019. Volume 199Issue 3March 2018Page: 623-632 Advertisement Copyright & Permissions© 2018 by American Urological Association Education and Research, Inc.Keywordskidney calculihypercalciuriageneticsnephrolithiasisprecision medicineMetricsAuthor Information Lucas J. Policastro Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York More articles by this author Subodh J. Saggi Department of Nephrology, SUNY Downstate Medical Center, Brooklyn, New York More articles by this author David S. Goldfarb Nephrology Section, NY Harbor VA Medical Center, New York, New York Nephrology Division, New York University School of Medicine, New York, New York Supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Center for Advancing Translational Sciences. Financial interest and/or other relationship with Allena, AstraZeneca, Cymabay, Ironwood, Revive and Ravine Group. More articles by this author Jeffrey P. Weiss Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York Urology Service, NY Harbor VA Medical Center, New York, New York Financial interest and/or other relationship with Ferring, Pfizer and Allergan. More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2765279432 created "2017-11-10" @default.
- W2765279432 creator A5004806685 @default.
- W2765279432 creator A5014091322 @default.
- W2765279432 creator A5041942481 @default.
- W2765279432 creator A5088302147 @default.
- W2765279432 date "2018-03-01" @default.
- W2765279432 modified "2023-10-17" @default.
- W2765279432 title "Personalized Intervention in Monogenic Stone Formers" @default.
- W2765279432 cites W1151991771 @default.
- W2765279432 cites W1966178769 @default.
- W2765279432 cites W1975528985 @default.
- W2765279432 cites W1983544276 @default.
- W2765279432 cites W2002567714 @default.
- W2765279432 cites W2014499368 @default.
- W2765279432 cites W2026157746 @default.
- W2765279432 cites W2036129358 @default.
- W2765279432 cites W2074516286 @default.
- W2765279432 cites W2079094312 @default.
- W2765279432 cites W2083929656 @default.
- W2765279432 cites W2086409100 @default.
- W2765279432 cites W2089191825 @default.
- W2765279432 cites W2090037204 @default.
- W2765279432 cites W2101405306 @default.
- W2765279432 cites W2103338311 @default.
- W2765279432 cites W2106197569 @default.
- W2765279432 cites W2106202735 @default.
- W2765279432 cites W2108135980 @default.
- W2765279432 cites W2126665887 @default.
- W2765279432 cites W2127251958 @default.
- W2765279432 cites W2132749564 @default.
- W2765279432 cites W2140384888 @default.
- W2765279432 cites W2146048475 @default.
- W2765279432 cites W2151203707 @default.
- W2765279432 cites W2157055527 @default.
- W2765279432 cites W2158886910 @default.
- W2765279432 cites W2169269677 @default.
- W2765279432 cites W2174393896 @default.
- W2765279432 cites W2209323210 @default.
- W2765279432 cites W2311505035 @default.
- W2765279432 cites W2343666520 @default.
- W2765279432 cites W2400963829 @default.
- W2765279432 cites W2402261625 @default.
- W2765279432 cites W2468489010 @default.
- W2765279432 cites W2477718609 @default.
- W2765279432 cites W2481567338 @default.
- W2765279432 cites W2519452747 @default.
- W2765279432 cites W2531427811 @default.
- W2765279432 cites W2535391942 @default.
- W2765279432 cites W2547201004 @default.
- W2765279432 cites W2554175022 @default.
- W2765279432 cites W2559049100 @default.
- W2765279432 cites W2559934180 @default.
- W2765279432 cites W2560440401 @default.
- W2765279432 cites W2585354401 @default.
- W2765279432 cites W4249962364 @default.
- W2765279432 cites W2105904658 @default.
- W2765279432 doi "https://doi.org/10.1016/j.juro.2017.09.143" @default.
- W2765279432 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5910290" @default.
- W2765279432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29061541" @default.
- W2765279432 hasPublicationYear "2018" @default.
- W2765279432 type Work @default.
- W2765279432 sameAs 2765279432 @default.
- W2765279432 citedByCount "16" @default.
- W2765279432 countsByYear W27652794322018 @default.
- W2765279432 countsByYear W27652794322019 @default.
- W2765279432 countsByYear W27652794322020 @default.
- W2765279432 countsByYear W27652794322021 @default.
- W2765279432 countsByYear W27652794322022 @default.
- W2765279432 countsByYear W27652794322023 @default.
- W2765279432 crossrefType "journal-article" @default.
- W2765279432 hasAuthorship W2765279432A5004806685 @default.
- W2765279432 hasAuthorship W2765279432A5014091322 @default.
- W2765279432 hasAuthorship W2765279432A5041942481 @default.
- W2765279432 hasAuthorship W2765279432A5088302147 @default.
- W2765279432 hasBestOaLocation W27652794322 @default.
- W2765279432 hasConcept C159110408 @default.
- W2765279432 hasConcept C2780665704 @default.
- W2765279432 hasConcept C71924100 @default.
- W2765279432 hasConceptScore W2765279432C159110408 @default.
- W2765279432 hasConceptScore W2765279432C2780665704 @default.
- W2765279432 hasConceptScore W2765279432C71924100 @default.
- W2765279432 hasIssue "3" @default.
- W2765279432 hasLocation W27652794321 @default.
- W2765279432 hasLocation W27652794322 @default.
- W2765279432 hasLocation W27652794323 @default.
- W2765279432 hasLocation W27652794324 @default.
- W2765279432 hasOpenAccess W2765279432 @default.
- W2765279432 hasPrimaryLocation W27652794321 @default.
- W2765279432 hasRelatedWork W1506200166 @default.
- W2765279432 hasRelatedWork W1995515455 @default.
- W2765279432 hasRelatedWork W2039318446 @default.
- W2765279432 hasRelatedWork W2048182022 @default.
- W2765279432 hasRelatedWork W2080531066 @default.
- W2765279432 hasRelatedWork W2604872355 @default.
- W2765279432 hasRelatedWork W2748952813 @default.
- W2765279432 hasRelatedWork W2899084033 @default.
- W2765279432 hasRelatedWork W3032375762 @default.