Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765317261> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2765317261 abstract "Purpose The purpose of this paper is to introduce an approach for retrieving a set of scientific articles in the field of Information Technology (IT) from a scientific database such as Web of Science (WoS), to apply scientometrics indices and compare them with other fields. Design/methodology/approach The authors propose to apply a statistical classification-based approach for extracting IT-related articles. In this approach, first, a probabilistic model is introduced to model the subject IT, using keyphrase extraction techniques. Then, they retrieve IT-related articles from all Iranian papers in WoS, based on a Bayesian classification scheme. Based on the probabilistic IT model, they assign an IT membership probability for each article in the database, and then they retrieve the articles with highest probabilities. Findings The authors have extracted a set of IT keyphrases, with 1,497 terms through the keyphrase extraction process, for the probabilistic model. They have evaluated the proposed retrieval approach with two approaches: the query-based approach in which the articles are retrieved from WoS using a set of queries composed of limited IT keywords, and the research area-based approach which is based on retrieving the articles using WoS categorizations and research areas. The evaluation and comparison results show that the proposed approach is able to generate more accurate results while retrieving more articles related to IT. Research limitations/implications Although this research is limited to the IT subject, it can be generalized for any subject as well. However, for multidisciplinary topics such as IT, special attention should be given to the keyphrase extraction phase. In this research, bigram model is used; however, one can extend it to tri-gram as well. Originality/value This paper introduces an integrated approach for retrieving IT-related documents from a collection of scientific documents. The approach has two main phases: building a model for representing topic IT, and retrieving documents based on the model. The model, based on a set of keyphrases, extracted from a collection of IT articles. However, the extraction technique does not rely on Term Frequency-Inverse Document Frequency, since almost all of the articles in the collection share a set of same keyphrases. In addition, a probabilistic membership score is defined to retrieve the IT articles from a collection of scientific articles." @default.
- W2765317261 created "2017-11-10" @default.
- W2765317261 creator A5021454843 @default.
- W2765317261 creator A5071896505 @default.
- W2765317261 creator A5083561008 @default.
- W2765317261 date "2017-09-05" @default.
- W2765317261 modified "2023-09-26" @default.
- W2765317261 title "Subject-based retrieval of scientific documents, case study" @default.
- W2765317261 cites W1586425508 @default.
- W2765317261 cites W2021624931 @default.
- W2765317261 cites W2025501506 @default.
- W2765317261 cites W2070242399 @default.
- W2765317261 cites W2083673244 @default.
- W2765317261 cites W2174706414 @default.
- W2765317261 cites W2238545866 @default.
- W2765317261 cites W2263510357 @default.
- W2765317261 cites W2495439411 @default.
- W2765317261 cites W3099640513 @default.
- W2765317261 doi "https://doi.org/10.1108/lr-10-2016-0090" @default.
- W2765317261 hasPublicationYear "2017" @default.
- W2765317261 type Work @default.
- W2765317261 sameAs 2765317261 @default.
- W2765317261 citedByCount "4" @default.
- W2765317261 countsByYear W27653172612018 @default.
- W2765317261 countsByYear W27653172612019 @default.
- W2765317261 countsByYear W27653172612021 @default.
- W2765317261 crossrefType "journal-article" @default.
- W2765317261 hasAuthorship W2765317261A5021454843 @default.
- W2765317261 hasAuthorship W2765317261A5071896505 @default.
- W2765317261 hasAuthorship W2765317261A5083561008 @default.
- W2765317261 hasConcept C124101348 @default.
- W2765317261 hasConcept C136764020 @default.
- W2765317261 hasConcept C154945302 @default.
- W2765317261 hasConcept C177264268 @default.
- W2765317261 hasConcept C199360897 @default.
- W2765317261 hasConcept C202444582 @default.
- W2765317261 hasConcept C23123220 @default.
- W2765317261 hasConcept C2777855551 @default.
- W2765317261 hasConcept C33923547 @default.
- W2765317261 hasConcept C41008148 @default.
- W2765317261 hasConcept C49937458 @default.
- W2765317261 hasConcept C525823164 @default.
- W2765317261 hasConcept C9652623 @default.
- W2765317261 hasConceptScore W2765317261C124101348 @default.
- W2765317261 hasConceptScore W2765317261C136764020 @default.
- W2765317261 hasConceptScore W2765317261C154945302 @default.
- W2765317261 hasConceptScore W2765317261C177264268 @default.
- W2765317261 hasConceptScore W2765317261C199360897 @default.
- W2765317261 hasConceptScore W2765317261C202444582 @default.
- W2765317261 hasConceptScore W2765317261C23123220 @default.
- W2765317261 hasConceptScore W2765317261C2777855551 @default.
- W2765317261 hasConceptScore W2765317261C33923547 @default.
- W2765317261 hasConceptScore W2765317261C41008148 @default.
- W2765317261 hasConceptScore W2765317261C49937458 @default.
- W2765317261 hasConceptScore W2765317261C525823164 @default.
- W2765317261 hasConceptScore W2765317261C9652623 @default.
- W2765317261 hasLocation W27653172611 @default.
- W2765317261 hasOpenAccess W2765317261 @default.
- W2765317261 hasPrimaryLocation W27653172611 @default.
- W2765317261 hasRelatedWork W124245717 @default.
- W2765317261 hasRelatedWork W125745833 @default.
- W2765317261 hasRelatedWork W1601556751 @default.
- W2765317261 hasRelatedWork W1977343191 @default.
- W2765317261 hasRelatedWork W2020997294 @default.
- W2765317261 hasRelatedWork W2027526469 @default.
- W2765317261 hasRelatedWork W2033010423 @default.
- W2765317261 hasRelatedWork W2108835275 @default.
- W2765317261 hasRelatedWork W2128526850 @default.
- W2765317261 hasRelatedWork W2131133093 @default.
- W2765317261 hasRelatedWork W2294710636 @default.
- W2765317261 hasRelatedWork W2325241953 @default.
- W2765317261 hasRelatedWork W2767496934 @default.
- W2765317261 hasRelatedWork W2786893911 @default.
- W2765317261 hasRelatedWork W2806477380 @default.
- W2765317261 hasRelatedWork W2808058165 @default.
- W2765317261 hasRelatedWork W2894841400 @default.
- W2765317261 hasRelatedWork W2949868778 @default.
- W2765317261 hasRelatedWork W2976890275 @default.
- W2765317261 hasRelatedWork W3159309869 @default.
- W2765317261 isParatext "false" @default.
- W2765317261 isRetracted "false" @default.
- W2765317261 magId "2765317261" @default.
- W2765317261 workType "article" @default.