Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765366332> ?p ?o ?g. }
- W2765366332 endingPage "168" @default.
- W2765366332 startingPage "157" @default.
- W2765366332 abstract "In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches." @default.
- W2765366332 created "2017-11-10" @default.
- W2765366332 creator A5000937401 @default.
- W2765366332 creator A5015355317 @default.
- W2765366332 creator A5050560717 @default.
- W2765366332 creator A5071672663 @default.
- W2765366332 date "2018-01-01" @default.
- W2765366332 modified "2023-10-15" @default.
- W2765366332 title "Landmark-based deep multi-instance learning for brain disease diagnosis" @default.
- W2765366332 cites W1550721541 @default.
- W2765366332 cites W1763022604 @default.
- W2765366332 cites W1965359844 @default.
- W2765366332 cites W1978832801 @default.
- W2765366332 cites W1984195582 @default.
- W2765366332 cites W1995277044 @default.
- W2765366332 cites W1998710995 @default.
- W2765366332 cites W2010792435 @default.
- W2765366332 cites W2011481459 @default.
- W2765366332 cites W2018935975 @default.
- W2765366332 cites W2019583087 @default.
- W2765366332 cites W2028633780 @default.
- W2765366332 cites W2030810279 @default.
- W2765366332 cites W2034275438 @default.
- W2765366332 cites W2036162736 @default.
- W2765366332 cites W2038899746 @default.
- W2765366332 cites W2040937137 @default.
- W2765366332 cites W2054540100 @default.
- W2765366332 cites W2058046532 @default.
- W2765366332 cites W2061272711 @default.
- W2765366332 cites W2065872609 @default.
- W2765366332 cites W2078524519 @default.
- W2765366332 cites W2086978209 @default.
- W2765366332 cites W2087964262 @default.
- W2765366332 cites W2093602450 @default.
- W2765366332 cites W2098140880 @default.
- W2765366332 cites W2109553965 @default.
- W2765366332 cites W2110119381 @default.
- W2765366332 cites W2110208125 @default.
- W2765366332 cites W2119848633 @default.
- W2765366332 cites W2123957845 @default.
- W2765366332 cites W2129812935 @default.
- W2765366332 cites W2133188546 @default.
- W2765366332 cites W2136573752 @default.
- W2765366332 cites W2153171432 @default.
- W2765366332 cites W2154123014 @default.
- W2765366332 cites W2157848968 @default.
- W2765366332 cites W2158177997 @default.
- W2765366332 cites W2164303459 @default.
- W2765366332 cites W2171723438 @default.
- W2765366332 cites W2171831801 @default.
- W2765366332 cites W2283388449 @default.
- W2765366332 cites W2327949797 @default.
- W2765366332 cites W2344328023 @default.
- W2765366332 cites W2344858100 @default.
- W2765366332 cites W2463258885 @default.
- W2765366332 cites W2555500380 @default.
- W2765366332 cites W2613483135 @default.
- W2765366332 cites W2614542815 @default.
- W2765366332 cites W2724710774 @default.
- W2765366332 cites W59164597 @default.
- W2765366332 cites W1573049408 @default.
- W2765366332 doi "https://doi.org/10.1016/j.media.2017.10.005" @default.
- W2765366332 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6203325" @default.
- W2765366332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29107865" @default.
- W2765366332 hasPublicationYear "2018" @default.
- W2765366332 type Work @default.
- W2765366332 sameAs 2765366332 @default.
- W2765366332 citedByCount "277" @default.
- W2765366332 countsByYear W27653663322017 @default.
- W2765366332 countsByYear W27653663322018 @default.
- W2765366332 countsByYear W27653663322019 @default.
- W2765366332 countsByYear W27653663322020 @default.
- W2765366332 countsByYear W27653663322021 @default.
- W2765366332 countsByYear W27653663322022 @default.
- W2765366332 countsByYear W27653663322023 @default.
- W2765366332 crossrefType "journal-article" @default.
- W2765366332 hasAuthorship W2765366332A5000937401 @default.
- W2765366332 hasAuthorship W2765366332A5015355317 @default.
- W2765366332 hasAuthorship W2765366332A5050560717 @default.
- W2765366332 hasAuthorship W2765366332A5071672663 @default.
- W2765366332 hasBestOaLocation W27653663322 @default.
- W2765366332 hasConcept C108583219 @default.
- W2765366332 hasConcept C115961682 @default.
- W2765366332 hasConcept C119857082 @default.
- W2765366332 hasConcept C142724271 @default.
- W2765366332 hasConcept C153180895 @default.
- W2765366332 hasConcept C154945302 @default.
- W2765366332 hasConcept C2779134260 @default.
- W2765366332 hasConcept C2780297707 @default.
- W2765366332 hasConcept C2991673738 @default.
- W2765366332 hasConcept C31972630 @default.
- W2765366332 hasConcept C41008148 @default.
- W2765366332 hasConcept C71924100 @default.
- W2765366332 hasConcept C95623464 @default.
- W2765366332 hasConceptScore W2765366332C108583219 @default.
- W2765366332 hasConceptScore W2765366332C115961682 @default.
- W2765366332 hasConceptScore W2765366332C119857082 @default.
- W2765366332 hasConceptScore W2765366332C142724271 @default.