Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765387557> ?p ?o ?g. }
- W2765387557 endingPage "32" @default.
- W2765387557 startingPage "22" @default.
- W2765387557 abstract "To provide basic data on the local differences in density of microvessels between various parts of the human brain, including representative grey and white matter structures of the cerebral hemispheres, the brain stem and the cerebellum, we quantified the numerical density NV and the length density LV of microvessels in two human brains. We aimed to correlate the density of microvessels with previously published data on their preferential orientation (anisotropy). Microvessels were identified using immunohistochemistry for laminin in 32 samples harvested from the following brain regions of two adult individuals: the cortex of the telencephalon supplied by the anterior, middle, and posterior cerebral artery; the basal ganglia (putamen and globus pallidus); the thalamus; the subcortical white matter of the telencephalon; the internal capsule; the pons; the cerebellar cortex; and the cerebellar white matter. NV was calculated from the number of vascular branching points and their valence, which were assessed using the optical disector in 20-μm-thick sections. LV was estimated using counting frames applied to routine sections with randomized cutting planes. After correction for shrinkage, NV in the cerebral cortex was 1311 ± 326 mm−3 (mean ± SD) and LV was 255 ± 119 mm−2. Similarly, in subcortical grey matter (which included the basal ganglia and thalamus), NV was 1350 ± 445 mm−3 and LV was 328 ± 117 mm−2. The vascular networks of cortical and subcortical grey matter were comparable. Their densities were greater than in the white matter, with NV = 222 ± 147 mm−3 and LV = 160 ± 96 mm−2. NV was moderately correlated with LV. In parts of brain with greater NV, blood vessels lacked a preferential orientation. Our data were in agreement with other studies on microvessel density focused on specific brain regions, but showed a greater variability, thus mapping the basic differences among various parts of brain. To facilitate the planning of other studies on brain vascularity and to support the development of computational models of human brain circulation based on real microvascular morphology; stereological data in form of continuous variables are made available as supplements." @default.
- W2765387557 created "2017-11-10" @default.
- W2765387557 creator A5024285720 @default.
- W2765387557 creator A5042033987 @default.
- W2765387557 creator A5068646008 @default.
- W2765387557 creator A5071952556 @default.
- W2765387557 creator A5075404359 @default.
- W2765387557 date "2018-03-01" @default.
- W2765387557 modified "2023-10-16" @default.
- W2765387557 title "Numerical and length densities of microvessels in the human brain: Correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum" @default.
- W2765387557 cites W1543335563 @default.
- W2765387557 cites W1573088438 @default.
- W2765387557 cites W1965449536 @default.
- W2765387557 cites W1966244775 @default.
- W2765387557 cites W1968363281 @default.
- W2765387557 cites W1970909674 @default.
- W2765387557 cites W1997062869 @default.
- W2765387557 cites W1998485043 @default.
- W2765387557 cites W2001578569 @default.
- W2765387557 cites W2002586787 @default.
- W2765387557 cites W2003528637 @default.
- W2765387557 cites W2009752320 @default.
- W2765387557 cites W2013931318 @default.
- W2765387557 cites W2014892312 @default.
- W2765387557 cites W2016579905 @default.
- W2765387557 cites W2024189727 @default.
- W2765387557 cites W2028520561 @default.
- W2765387557 cites W2028574924 @default.
- W2765387557 cites W2031451191 @default.
- W2765387557 cites W2034166427 @default.
- W2765387557 cites W2035248798 @default.
- W2765387557 cites W2037367554 @default.
- W2765387557 cites W2037878590 @default.
- W2765387557 cites W2044263465 @default.
- W2765387557 cites W2056414826 @default.
- W2765387557 cites W2059812044 @default.
- W2765387557 cites W2064679863 @default.
- W2765387557 cites W2066794375 @default.
- W2765387557 cites W2074669445 @default.
- W2765387557 cites W2075091541 @default.
- W2765387557 cites W2077169894 @default.
- W2765387557 cites W2078572817 @default.
- W2765387557 cites W2078639365 @default.
- W2765387557 cites W2084011927 @default.
- W2765387557 cites W2084190105 @default.
- W2765387557 cites W2087404207 @default.
- W2765387557 cites W2099656082 @default.
- W2765387557 cites W2105382539 @default.
- W2765387557 cites W2106821704 @default.
- W2765387557 cites W2106875648 @default.
- W2765387557 cites W2109245536 @default.
- W2765387557 cites W2111405228 @default.
- W2765387557 cites W2112759033 @default.
- W2765387557 cites W2114929255 @default.
- W2765387557 cites W2118830011 @default.
- W2765387557 cites W2119248270 @default.
- W2765387557 cites W2127529927 @default.
- W2765387557 cites W2129560875 @default.
- W2765387557 cites W2143142619 @default.
- W2765387557 cites W2150920454 @default.
- W2765387557 cites W2151685316 @default.
- W2765387557 cites W2168958449 @default.
- W2765387557 cites W2169118010 @default.
- W2765387557 cites W2172225799 @default.
- W2765387557 cites W2265986496 @default.
- W2765387557 cites W2311306217 @default.
- W2765387557 cites W2314981277 @default.
- W2765387557 cites W2331732531 @default.
- W2765387557 cites W2337960647 @default.
- W2765387557 cites W2413872336 @default.
- W2765387557 cites W2566718637 @default.
- W2765387557 cites W2616885793 @default.
- W2765387557 cites W2620948359 @default.
- W2765387557 cites W4254354264 @default.
- W2765387557 cites W4322701624 @default.
- W2765387557 doi "https://doi.org/10.1016/j.jchemneu.2017.11.005" @default.
- W2765387557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29113946" @default.
- W2765387557 hasPublicationYear "2018" @default.
- W2765387557 type Work @default.
- W2765387557 sameAs 2765387557 @default.
- W2765387557 citedByCount "30" @default.
- W2765387557 countsByYear W27653875572018 @default.
- W2765387557 countsByYear W27653875572019 @default.
- W2765387557 countsByYear W27653875572020 @default.
- W2765387557 countsByYear W27653875572021 @default.
- W2765387557 countsByYear W27653875572022 @default.
- W2765387557 countsByYear W27653875572023 @default.
- W2765387557 crossrefType "journal-article" @default.
- W2765387557 hasAuthorship W2765387557A5024285720 @default.
- W2765387557 hasAuthorship W2765387557A5042033987 @default.
- W2765387557 hasAuthorship W2765387557A5068646008 @default.
- W2765387557 hasAuthorship W2765387557A5071952556 @default.
- W2765387557 hasAuthorship W2765387557A5075404359 @default.
- W2765387557 hasConcept C105702510 @default.
- W2765387557 hasConcept C126838900 @default.
- W2765387557 hasConcept C143409427 @default.
- W2765387557 hasConcept C169760540 @default.
- W2765387557 hasConcept C2777348757 @default.