Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765403648> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2765403648 abstract "Hypervisor-based virtualization technology has been successfully used to deploy high-performance and scalable infrastructure for Hadoop, and now Spark applications. Container-based virtualization techniques are becoming an important option, which is increasingly used due to their lightweight operation and better scaling when compared to Virtual Machines (VM). With containerization techniques such as Docker becoming mature and promising better performance, we can use Docker to speed-up big data applications. However, as applications have different behaviors and resource requirements, before replacing traditional hypervisor-based virtual machines with Docker, it is important to analyze and compare performance of applications running in the cloud with VMs and Docker containers. VM provides distributed resource management for different virtual machines running with their own allocated resources, while Docker relies on shared pool of resources among all containers. Here, we investigate the performance of different Apache Spark applications using both Virtual Machines (VM) and Docker containers. While others have looked at Docker's performance, this is the first study that compares these different virtualization frameworks for a big data enterprise cloud environment using Apache Spark. In addition to makespan and execution time, we also analyze different resource utilization (CPU, disk, memory, etc.) by Spark applications. Our results show that Spark using Docker can obtain speed-up of over 10 times when compared to using VM. However, we observe that this may not apply to all applications due to different workload patterns and different resource management schemes performed by virtual machines and containers. Our work can guide application developers, system administrators and researchers to better design and deploy big data applications on their platforms to improve the overall performance." @default.
- W2765403648 created "2017-11-10" @default.
- W2765403648 creator A5011474644 @default.
- W2765403648 creator A5066967694 @default.
- W2765403648 creator A5083047329 @default.
- W2765403648 creator A5091825452 @default.
- W2765403648 date "2017-09-01" @default.
- W2765403648 modified "2023-09-27" @default.
- W2765403648 title "Accelerating big data applications using lightweight virtualization framework on enterprise cloud" @default.
- W2765403648 cites W1984712701 @default.
- W2765403648 cites W1998444769 @default.
- W2765403648 cites W2019397928 @default.
- W2765403648 cites W2023953679 @default.
- W2765403648 cites W2056198910 @default.
- W2765403648 cites W2075174112 @default.
- W2765403648 cites W2086966678 @default.
- W2765403648 cites W2119738171 @default.
- W2765403648 cites W2140672955 @default.
- W2765403648 cites W2158297889 @default.
- W2765403648 cites W2173213060 @default.
- W2765403648 cites W2190012392 @default.
- W2765403648 cites W2216541755 @default.
- W2765403648 cites W2512686928 @default.
- W2765403648 cites W2558176545 @default.
- W2765403648 cites W2572817543 @default.
- W2765403648 cites W2572898255 @default.
- W2765403648 cites W2573445381 @default.
- W2765403648 cites W2574887402 @default.
- W2765403648 cites W2578649947 @default.
- W2765403648 cites W2581429927 @default.
- W2765403648 cites W2586584051 @default.
- W2765403648 cites W2603429743 @default.
- W2765403648 cites W2755798617 @default.
- W2765403648 cites W2755920299 @default.
- W2765403648 cites W2756064476 @default.
- W2765403648 doi "https://doi.org/10.1109/hpec.2017.8091086" @default.
- W2765403648 hasPublicationYear "2017" @default.
- W2765403648 type Work @default.
- W2765403648 sameAs 2765403648 @default.
- W2765403648 citedByCount "48" @default.
- W2765403648 countsByYear W27654036482017 @default.
- W2765403648 countsByYear W27654036482018 @default.
- W2765403648 countsByYear W27654036482019 @default.
- W2765403648 countsByYear W27654036482020 @default.
- W2765403648 countsByYear W27654036482021 @default.
- W2765403648 countsByYear W27654036482022 @default.
- W2765403648 countsByYear W27654036482023 @default.
- W2765403648 crossrefType "proceedings-article" @default.
- W2765403648 hasAuthorship W2765403648A5011474644 @default.
- W2765403648 hasAuthorship W2765403648A5066967694 @default.
- W2765403648 hasAuthorship W2765403648A5083047329 @default.
- W2765403648 hasAuthorship W2765403648A5091825452 @default.
- W2765403648 hasConcept C111919701 @default.
- W2765403648 hasConcept C112904061 @default.
- W2765403648 hasConcept C127413603 @default.
- W2765403648 hasConcept C199360897 @default.
- W2765403648 hasConcept C25344961 @default.
- W2765403648 hasConcept C2781018962 @default.
- W2765403648 hasConcept C2781215313 @default.
- W2765403648 hasConcept C34760210 @default.
- W2765403648 hasConcept C41008148 @default.
- W2765403648 hasConcept C48044578 @default.
- W2765403648 hasConcept C513985346 @default.
- W2765403648 hasConcept C68793194 @default.
- W2765403648 hasConcept C75684735 @default.
- W2765403648 hasConcept C78519656 @default.
- W2765403648 hasConcept C79974875 @default.
- W2765403648 hasConceptScore W2765403648C111919701 @default.
- W2765403648 hasConceptScore W2765403648C112904061 @default.
- W2765403648 hasConceptScore W2765403648C127413603 @default.
- W2765403648 hasConceptScore W2765403648C199360897 @default.
- W2765403648 hasConceptScore W2765403648C25344961 @default.
- W2765403648 hasConceptScore W2765403648C2781018962 @default.
- W2765403648 hasConceptScore W2765403648C2781215313 @default.
- W2765403648 hasConceptScore W2765403648C34760210 @default.
- W2765403648 hasConceptScore W2765403648C41008148 @default.
- W2765403648 hasConceptScore W2765403648C48044578 @default.
- W2765403648 hasConceptScore W2765403648C513985346 @default.
- W2765403648 hasConceptScore W2765403648C68793194 @default.
- W2765403648 hasConceptScore W2765403648C75684735 @default.
- W2765403648 hasConceptScore W2765403648C78519656 @default.
- W2765403648 hasConceptScore W2765403648C79974875 @default.
- W2765403648 hasLocation W27654036481 @default.
- W2765403648 hasOpenAccess W2765403648 @default.
- W2765403648 hasPrimaryLocation W27654036481 @default.
- W2765403648 hasRelatedWork W1606290493 @default.
- W2765403648 hasRelatedWork W1950051066 @default.
- W2765403648 hasRelatedWork W1982643504 @default.
- W2765403648 hasRelatedWork W2098400606 @default.
- W2765403648 hasRelatedWork W2144875762 @default.
- W2765403648 hasRelatedWork W2462146643 @default.
- W2765403648 hasRelatedWork W2549930939 @default.
- W2765403648 hasRelatedWork W2578892675 @default.
- W2765403648 hasRelatedWork W2765403648 @default.
- W2765403648 hasRelatedWork W2772233455 @default.
- W2765403648 isParatext "false" @default.
- W2765403648 isRetracted "false" @default.
- W2765403648 magId "2765403648" @default.
- W2765403648 workType "article" @default.