Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765431210> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2765431210 endingPage "33" @default.
- W2765431210 startingPage "24" @default.
- W2765431210 abstract "Abstract Researchers typically need to filter several academic papers to find those relevant to their research. This filtering is cumbersome and time-consuming because the number of published academic papers is growing exponentially. Some researchers have focused on developing better recommender systems for academic papers by using citation analysis and content analysis. Most traditional content analysis is implemented using a keyword matching process, and thus it cannot consider the semantic contexts of items. Further, citation analysis-based techniques rely on the number of links directly citing or being cited in a single-level network. Consequently, it may be difficult to recommend the appropriate papers when the paper of interest does not have enough citation information. To address these problems, we propose a recommendation system for academic papers that combines citation analysis and network analysis. The proposed method is based on multilevel citation networks that compare all the indirectly linked papers to the paper of interest to inspect the structural and semantic relationships among them. Thus, the proposed method tends to recommend informative and useful papers related to both the research topic and the academic theory. The comparison results based on real data showed that the proposed method outperformed the Google Scholar and SCOPUS algorithms." @default.
- W2765431210 created "2017-11-10" @default.
- W2765431210 creator A5045753476 @default.
- W2765431210 creator A5058258354 @default.
- W2765431210 date "2018-01-01" @default.
- W2765431210 modified "2023-10-12" @default.
- W2765431210 title "Academic paper recommender system using multilevel simultaneous citation networks" @default.
- W2765431210 cites W1536060130 @default.
- W2765431210 cites W1809800090 @default.
- W2765431210 cites W1965170530 @default.
- W2765431210 cites W1970086395 @default.
- W2765431210 cites W1992422757 @default.
- W2765431210 cites W1996560844 @default.
- W2765431210 cites W2000865107 @default.
- W2765431210 cites W2001281158 @default.
- W2765431210 cites W2022308465 @default.
- W2765431210 cites W2029249040 @default.
- W2765431210 cites W2030808931 @default.
- W2765431210 cites W2042838633 @default.
- W2765431210 cites W2050265055 @default.
- W2765431210 cites W2054928183 @default.
- W2765431210 cites W2056944867 @default.
- W2765431210 cites W2091698885 @default.
- W2765431210 cites W2095231665 @default.
- W2765431210 cites W2112615110 @default.
- W2765431210 cites W2116206254 @default.
- W2765431210 cites W2127800791 @default.
- W2765431210 cites W2142144955 @default.
- W2765431210 cites W2155048531 @default.
- W2765431210 cites W2345690680 @default.
- W2765431210 doi "https://doi.org/10.1016/j.dss.2017.10.011" @default.
- W2765431210 hasPublicationYear "2018" @default.
- W2765431210 type Work @default.
- W2765431210 sameAs 2765431210 @default.
- W2765431210 citedByCount "71" @default.
- W2765431210 countsByYear W27654312102018 @default.
- W2765431210 countsByYear W27654312102019 @default.
- W2765431210 countsByYear W27654312102020 @default.
- W2765431210 countsByYear W27654312102021 @default.
- W2765431210 countsByYear W27654312102022 @default.
- W2765431210 countsByYear W27654312102023 @default.
- W2765431210 crossrefType "journal-article" @default.
- W2765431210 hasAuthorship W2765431210A5045753476 @default.
- W2765431210 hasAuthorship W2765431210A5058258354 @default.
- W2765431210 hasConcept C118524514 @default.
- W2765431210 hasConcept C136764020 @default.
- W2765431210 hasConcept C23123220 @default.
- W2765431210 hasConcept C2778805511 @default.
- W2765431210 hasConcept C41008148 @default.
- W2765431210 hasConcept C557471498 @default.
- W2765431210 hasConceptScore W2765431210C118524514 @default.
- W2765431210 hasConceptScore W2765431210C136764020 @default.
- W2765431210 hasConceptScore W2765431210C23123220 @default.
- W2765431210 hasConceptScore W2765431210C2778805511 @default.
- W2765431210 hasConceptScore W2765431210C41008148 @default.
- W2765431210 hasConceptScore W2765431210C557471498 @default.
- W2765431210 hasFunder F4320322030 @default.
- W2765431210 hasLocation W27654312101 @default.
- W2765431210 hasOpenAccess W2765431210 @default.
- W2765431210 hasPrimaryLocation W27654312101 @default.
- W2765431210 hasRelatedWork W2117346966 @default.
- W2765431210 hasRelatedWork W2348159088 @default.
- W2765431210 hasRelatedWork W2350747448 @default.
- W2765431210 hasRelatedWork W2368095327 @default.
- W2765431210 hasRelatedWork W2369936857 @default.
- W2765431210 hasRelatedWork W2499363748 @default.
- W2765431210 hasRelatedWork W2525876841 @default.
- W2765431210 hasRelatedWork W2809363009 @default.
- W2765431210 hasRelatedWork W2883909875 @default.
- W2765431210 hasRelatedWork W2968745142 @default.
- W2765431210 hasVolume "105" @default.
- W2765431210 isParatext "false" @default.
- W2765431210 isRetracted "false" @default.
- W2765431210 magId "2765431210" @default.
- W2765431210 workType "article" @default.