Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765431541> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2765431541 abstract "Sparse coding is widely used in signal and image processing. Highly related to sparse coding method, independent component analysis (ICA) can be used to build a statistical model for image processing. However, in practice, when used in image processing, the effect or efficiency of different ICA algorithms are not well studied. To fill this gap, in this paper, the image denoising performance of four classical ICA algorithms, namely, two different implementations of basic Fast-ICA, natural gradient algorithm and optimized Fast-ICA are studied. Firstly, assumptions required by sparse coding method and ICA algorithms are briefly introduced. Secondly, feature extraction and image denoising experiments are conducted to compare the performance of different ICA algorithms. The experiment results show that all ICA algorithms mentioned above can be used to explore natural image feature and image denoising, but the results are not always similar. The optimized Fast-ICA algorithm outperforms the other algorithms." @default.
- W2765431541 created "2017-11-10" @default.
- W2765431541 creator A5015818872 @default.
- W2765431541 creator A5054067811 @default.
- W2765431541 date "2017-03-01" @default.
- W2765431541 modified "2023-10-14" @default.
- W2765431541 title "ICA-based image denoising: A comparative analysis of four classical algorithms" @default.
- W2765431541 cites W2099244020 @default.
- W2765431541 cites W2103559027 @default.
- W2765431541 cites W2108384452 @default.
- W2765431541 cites W2125527601 @default.
- W2765431541 cites W2132680427 @default.
- W2765431541 cites W2132708980 @default.
- W2765431541 cites W2141224535 @default.
- W2765431541 cites W2143421693 @default.
- W2765431541 cites W2145012779 @default.
- W2765431541 cites W2145889472 @default.
- W2765431541 cites W2150134853 @default.
- W2765431541 cites W4205778870 @default.
- W2765431541 cites W4214806317 @default.
- W2765431541 cites W2019416765 @default.
- W2765431541 doi "https://doi.org/10.1109/icbda.2017.8078728" @default.
- W2765431541 hasPublicationYear "2017" @default.
- W2765431541 type Work @default.
- W2765431541 sameAs 2765431541 @default.
- W2765431541 citedByCount "2" @default.
- W2765431541 countsByYear W27654315412018 @default.
- W2765431541 countsByYear W27654315412020 @default.
- W2765431541 crossrefType "proceedings-article" @default.
- W2765431541 hasAuthorship W2765431541A5015818872 @default.
- W2765431541 hasAuthorship W2765431541A5054067811 @default.
- W2765431541 hasConcept C104267543 @default.
- W2765431541 hasConcept C105795698 @default.
- W2765431541 hasConcept C11413529 @default.
- W2765431541 hasConcept C115961682 @default.
- W2765431541 hasConcept C153180895 @default.
- W2765431541 hasConcept C154945302 @default.
- W2765431541 hasConcept C163294075 @default.
- W2765431541 hasConcept C179518139 @default.
- W2765431541 hasConcept C33923547 @default.
- W2765431541 hasConcept C41008148 @default.
- W2765431541 hasConcept C51432778 @default.
- W2765431541 hasConcept C52622490 @default.
- W2765431541 hasConcept C77637269 @default.
- W2765431541 hasConcept C84462506 @default.
- W2765431541 hasConcept C9390403 @default.
- W2765431541 hasConcept C9417928 @default.
- W2765431541 hasConceptScore W2765431541C104267543 @default.
- W2765431541 hasConceptScore W2765431541C105795698 @default.
- W2765431541 hasConceptScore W2765431541C11413529 @default.
- W2765431541 hasConceptScore W2765431541C115961682 @default.
- W2765431541 hasConceptScore W2765431541C153180895 @default.
- W2765431541 hasConceptScore W2765431541C154945302 @default.
- W2765431541 hasConceptScore W2765431541C163294075 @default.
- W2765431541 hasConceptScore W2765431541C179518139 @default.
- W2765431541 hasConceptScore W2765431541C33923547 @default.
- W2765431541 hasConceptScore W2765431541C41008148 @default.
- W2765431541 hasConceptScore W2765431541C51432778 @default.
- W2765431541 hasConceptScore W2765431541C52622490 @default.
- W2765431541 hasConceptScore W2765431541C77637269 @default.
- W2765431541 hasConceptScore W2765431541C84462506 @default.
- W2765431541 hasConceptScore W2765431541C9390403 @default.
- W2765431541 hasConceptScore W2765431541C9417928 @default.
- W2765431541 hasLocation W27654315411 @default.
- W2765431541 hasOpenAccess W2765431541 @default.
- W2765431541 hasPrimaryLocation W27654315411 @default.
- W2765431541 hasRelatedWork W2139122292 @default.
- W2765431541 hasRelatedWork W2374380197 @default.
- W2765431541 hasRelatedWork W2383244997 @default.
- W2765431541 hasRelatedWork W2407432519 @default.
- W2765431541 hasRelatedWork W2900180889 @default.
- W2765431541 hasRelatedWork W3033494729 @default.
- W2765431541 hasRelatedWork W3088797428 @default.
- W2765431541 hasRelatedWork W3202797901 @default.
- W2765431541 hasRelatedWork W4226084447 @default.
- W2765431541 hasRelatedWork W2092619848 @default.
- W2765431541 isParatext "false" @default.
- W2765431541 isRetracted "false" @default.
- W2765431541 magId "2765431541" @default.
- W2765431541 workType "article" @default.