Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765434062> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2765434062 endingPage "A753" @default.
- W2765434062 startingPage "A753" @default.
- W2765434062 abstract "Probabilistic Sensitivity Analysis (PSA) results depend on the assumptions about the marginal distributions of model parameters and their joint distribution. Although joint distribution of some parameters are accounted for (Dirichlet for transition probabilities, multivariate normal for regression parameters), in most health economic models investigation of different types of dependence structures is omitted. As a result, PSA results reflect model inputs that are assumed to be independently distributed. This can lead to inaccurate uncertainty analysis results. We demonstrated how to fit copulas to data we used to populate a health economic model to construct joint distributions. We then sampled parameter values under different assumptions about their joint distribution: First we assumed they are independent, reflecting the current practices; second we assumed that the variables are jointly normally distributed, and finally we used copulas to sample from the marginal distributions. We compared various plots generated under different assumptions to the scatterplot of the original data. Using a health economic cost-effectiveness model, we analysed the PSA results under three different assumptions. Joint distributions with independence and multivariate normal assumption do not accurately represent the dependence observed in the data. PSA results indicate that the variability of model outcomes changed. This has implications on the conclusions about the uncertainty of the base case estimate of cost-effectiveness of the treatment. Ignoring the dependence structure between model parameters can lead to inaccurate results and can distort PSA conclusions. Investigation of the joint distribution of parameters should be a routine part of uncertainty analysis. The methodologies for fitting copulas and simulating random variables with different dependence structures are well documented and they should be incorporated in health economic modelling." @default.
- W2765434062 created "2017-11-10" @default.
- W2765434062 creator A5035480191 @default.
- W2765434062 creator A5053811939 @default.
- W2765434062 date "2017-10-01" @default.
- W2765434062 modified "2023-09-28" @default.
- W2765434062 title "Incorporating Dependence Between Model Parameters In Uncertainty Analyses" @default.
- W2765434062 doi "https://doi.org/10.1016/j.jval.2017.08.2112" @default.
- W2765434062 hasPublicationYear "2017" @default.
- W2765434062 type Work @default.
- W2765434062 sameAs 2765434062 @default.
- W2765434062 citedByCount "0" @default.
- W2765434062 crossrefType "journal-article" @default.
- W2765434062 hasAuthorship W2765434062A5035480191 @default.
- W2765434062 hasAuthorship W2765434062A5053811939 @default.
- W2765434062 hasBestOaLocation W27654340621 @default.
- W2765434062 hasConcept C105795698 @default.
- W2765434062 hasConcept C122123141 @default.
- W2765434062 hasConcept C127413603 @default.
- W2765434062 hasConcept C134306372 @default.
- W2765434062 hasConcept C149782125 @default.
- W2765434062 hasConcept C161584116 @default.
- W2765434062 hasConcept C165216359 @default.
- W2765434062 hasConcept C169214877 @default.
- W2765434062 hasConcept C170154142 @default.
- W2765434062 hasConcept C17618745 @default.
- W2765434062 hasConcept C177384507 @default.
- W2765434062 hasConcept C182310444 @default.
- W2765434062 hasConcept C18555067 @default.
- W2765434062 hasConcept C18653775 @default.
- W2765434062 hasConcept C33923547 @default.
- W2765434062 hasConcept C35651441 @default.
- W2765434062 hasConcept C49937458 @default.
- W2765434062 hasConceptScore W2765434062C105795698 @default.
- W2765434062 hasConceptScore W2765434062C122123141 @default.
- W2765434062 hasConceptScore W2765434062C127413603 @default.
- W2765434062 hasConceptScore W2765434062C134306372 @default.
- W2765434062 hasConceptScore W2765434062C149782125 @default.
- W2765434062 hasConceptScore W2765434062C161584116 @default.
- W2765434062 hasConceptScore W2765434062C165216359 @default.
- W2765434062 hasConceptScore W2765434062C169214877 @default.
- W2765434062 hasConceptScore W2765434062C170154142 @default.
- W2765434062 hasConceptScore W2765434062C17618745 @default.
- W2765434062 hasConceptScore W2765434062C177384507 @default.
- W2765434062 hasConceptScore W2765434062C182310444 @default.
- W2765434062 hasConceptScore W2765434062C18555067 @default.
- W2765434062 hasConceptScore W2765434062C18653775 @default.
- W2765434062 hasConceptScore W2765434062C33923547 @default.
- W2765434062 hasConceptScore W2765434062C35651441 @default.
- W2765434062 hasConceptScore W2765434062C49937458 @default.
- W2765434062 hasIssue "9" @default.
- W2765434062 hasLocation W27654340621 @default.
- W2765434062 hasOpenAccess W2765434062 @default.
- W2765434062 hasPrimaryLocation W27654340621 @default.
- W2765434062 hasRelatedWork W1983195306 @default.
- W2765434062 hasRelatedWork W2149581190 @default.
- W2765434062 hasRelatedWork W2356628803 @default.
- W2765434062 hasRelatedWork W2370645743 @default.
- W2765434062 hasRelatedWork W2382619973 @default.
- W2765434062 hasRelatedWork W2737120671 @default.
- W2765434062 hasRelatedWork W2790516007 @default.
- W2765434062 hasRelatedWork W3123002601 @default.
- W2765434062 hasRelatedWork W3144634162 @default.
- W2765434062 hasRelatedWork W4206608468 @default.
- W2765434062 hasVolume "20" @default.
- W2765434062 isParatext "false" @default.
- W2765434062 isRetracted "false" @default.
- W2765434062 magId "2765434062" @default.
- W2765434062 workType "article" @default.