Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765438087> ?p ?o ?g. }
- W2765438087 endingPage "1014" @default.
- W2765438087 startingPage "997" @default.
- W2765438087 abstract "Deep-sea ferromanganese nodules found in the Clarion-Clipperton zone (CCZ) in the Pacific ocean are a large potential source of metals such as nickel, cobalt, and manganese. Spatial modeling of these nodules is essential to obtain a better scientific understanding about their formation and distribution, and conduct feasibility studies on their exploitation. However, data on the quantitative and qualitative distribution of nodules in CCZ are sparse and often not divulged, and the accuracy of conventional spatial modeling techniques is limited by this scarcity of data. We present an approach based on artificial neural networks for modeling nodule parameters in the CCZ using the limited data available in the open domain. Our model's predictions are comparable to benchmark predictions from the International Seabed Authority which used a more extensive data set. Moreover, our model can predict small as well as large-scale variations of nodules, which are essential in making evaluations for deep-sea harvesting. We discuss the contribution of each factor in the modeling, and show that small-scale nodule parameter variations can be effectively predicted by incorporating the local topography." @default.
- W2765438087 created "2017-11-10" @default.
- W2765438087 creator A5026947423 @default.
- W2765438087 creator A5029181858 @default.
- W2765438087 creator A5067178295 @default.
- W2765438087 creator A5078519657 @default.
- W2765438087 date "2018-10-01" @default.
- W2765438087 modified "2023-09-26" @default.
- W2765438087 title "Spatial Modeling of Deep-Sea Ferromanganese Nodules With Limited Data Using Neural Networks" @default.
- W2765438087 cites W1000932589 @default.
- W2765438087 cites W1550570921 @default.
- W2765438087 cites W1596919837 @default.
- W2765438087 cites W1880867001 @default.
- W2765438087 cites W1963816062 @default.
- W2765438087 cites W1976077995 @default.
- W2765438087 cites W1982205098 @default.
- W2765438087 cites W1988291936 @default.
- W2765438087 cites W1990678541 @default.
- W2765438087 cites W1992983669 @default.
- W2765438087 cites W1995280973 @default.
- W2765438087 cites W2024697317 @default.
- W2765438087 cites W2029285028 @default.
- W2765438087 cites W2029647685 @default.
- W2765438087 cites W2035339292 @default.
- W2765438087 cites W2035424729 @default.
- W2765438087 cites W2039555233 @default.
- W2765438087 cites W2051663919 @default.
- W2765438087 cites W2052743819 @default.
- W2765438087 cites W2061296506 @default.
- W2765438087 cites W2065141406 @default.
- W2765438087 cites W2065385186 @default.
- W2765438087 cites W2069148712 @default.
- W2765438087 cites W2070188654 @default.
- W2765438087 cites W2074984119 @default.
- W2765438087 cites W2076063813 @default.
- W2765438087 cites W2079426488 @default.
- W2765438087 cites W2080860526 @default.
- W2765438087 cites W2083617822 @default.
- W2765438087 cites W2091432990 @default.
- W2765438087 cites W2093650457 @default.
- W2765438087 cites W2103540160 @default.
- W2765438087 cites W2143413731 @default.
- W2765438087 cites W2147437052 @default.
- W2765438087 cites W2160815625 @default.
- W2765438087 cites W28797964 @default.
- W2765438087 cites W433518169 @default.
- W2765438087 cites W621614306 @default.
- W2765438087 cites W2053248717 @default.
- W2765438087 doi "https://doi.org/10.1109/joe.2017.2752757" @default.
- W2765438087 hasPublicationYear "2018" @default.
- W2765438087 type Work @default.
- W2765438087 sameAs 2765438087 @default.
- W2765438087 citedByCount "10" @default.
- W2765438087 countsByYear W27654380872017 @default.
- W2765438087 countsByYear W27654380872018 @default.
- W2765438087 countsByYear W27654380872020 @default.
- W2765438087 countsByYear W27654380872021 @default.
- W2765438087 countsByYear W27654380872022 @default.
- W2765438087 countsByYear W27654380872023 @default.
- W2765438087 crossrefType "journal-article" @default.
- W2765438087 hasAuthorship W2765438087A5026947423 @default.
- W2765438087 hasAuthorship W2765438087A5029181858 @default.
- W2765438087 hasAuthorship W2765438087A5067178295 @default.
- W2765438087 hasAuthorship W2765438087A5078519657 @default.
- W2765438087 hasConcept C111368507 @default.
- W2765438087 hasConcept C127313418 @default.
- W2765438087 hasConcept C151730666 @default.
- W2765438087 hasConcept C154945302 @default.
- W2765438087 hasConcept C158709400 @default.
- W2765438087 hasConcept C174943157 @default.
- W2765438087 hasConcept C185798385 @default.
- W2765438087 hasConcept C18903297 @default.
- W2765438087 hasConcept C191897082 @default.
- W2765438087 hasConcept C192562407 @default.
- W2765438087 hasConcept C205649164 @default.
- W2765438087 hasConcept C21790881 @default.
- W2765438087 hasConcept C2776731575 @default.
- W2765438087 hasConcept C2777016058 @default.
- W2765438087 hasConcept C41008148 @default.
- W2765438087 hasConcept C50644808 @default.
- W2765438087 hasConcept C528890316 @default.
- W2765438087 hasConcept C58640448 @default.
- W2765438087 hasConcept C62649853 @default.
- W2765438087 hasConcept C67443715 @default.
- W2765438087 hasConcept C86803240 @default.
- W2765438087 hasConceptScore W2765438087C111368507 @default.
- W2765438087 hasConceptScore W2765438087C127313418 @default.
- W2765438087 hasConceptScore W2765438087C151730666 @default.
- W2765438087 hasConceptScore W2765438087C154945302 @default.
- W2765438087 hasConceptScore W2765438087C158709400 @default.
- W2765438087 hasConceptScore W2765438087C174943157 @default.
- W2765438087 hasConceptScore W2765438087C185798385 @default.
- W2765438087 hasConceptScore W2765438087C18903297 @default.
- W2765438087 hasConceptScore W2765438087C191897082 @default.
- W2765438087 hasConceptScore W2765438087C192562407 @default.
- W2765438087 hasConceptScore W2765438087C205649164 @default.
- W2765438087 hasConceptScore W2765438087C21790881 @default.
- W2765438087 hasConceptScore W2765438087C2776731575 @default.