Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765456447> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2765456447 abstract "Social media has been an important way for people to get news. It is designed to make the sharing of messages very fast and easy. It also attracted the attention of a large number of researchers. There has been research concerning predicting what messages will be popular. But it lacks of in-depth study of what features play an important role in the prediction task. In the work, we systematically and comprehensively study three types of features: user features, text features and time features. Multiple comparison experiments are carried out on big data platform. Experimental results show that time features are the most valuable features, almost close to the effect of all the features, and the popularity of messages is predicted with a satisfactory accuracy." @default.
- W2765456447 created "2017-11-10" @default.
- W2765456447 creator A5001620687 @default.
- W2765456447 creator A5020422648 @default.
- W2765456447 creator A5028809134 @default.
- W2765456447 creator A5033986477 @default.
- W2765456447 creator A5075729645 @default.
- W2765456447 creator A5086664284 @default.
- W2765456447 date "2017-03-01" @default.
- W2765456447 modified "2023-10-17" @default.
- W2765456447 title "Predicting the popularity of messages based on big data" @default.
- W2765456447 cites W1499517307 @default.
- W2765456447 cites W1964064052 @default.
- W2765456447 cites W1967579779 @default.
- W2765456447 cites W1975559237 @default.
- W2765456447 cites W1982861695 @default.
- W2765456447 cites W2000200507 @default.
- W2765456447 cites W2026318959 @default.
- W2765456447 cites W2053968437 @default.
- W2765456447 cites W2070912969 @default.
- W2765456447 cites W2076219102 @default.
- W2765456447 cites W2107310491 @default.
- W2765456447 cites W2107383413 @default.
- W2765456447 cites W2128916364 @default.
- W2765456447 cites W2146388917 @default.
- W2765456447 cites W2461419258 @default.
- W2765456447 cites W3124645392 @default.
- W2765456447 cites W33913231 @default.
- W2765456447 cites W64303246 @default.
- W2765456447 doi "https://doi.org/10.1109/icbda.2017.8078799" @default.
- W2765456447 hasPublicationYear "2017" @default.
- W2765456447 type Work @default.
- W2765456447 sameAs 2765456447 @default.
- W2765456447 citedByCount "1" @default.
- W2765456447 countsByYear W27654564472019 @default.
- W2765456447 crossrefType "proceedings-article" @default.
- W2765456447 hasAuthorship W2765456447A5001620687 @default.
- W2765456447 hasAuthorship W2765456447A5020422648 @default.
- W2765456447 hasAuthorship W2765456447A5028809134 @default.
- W2765456447 hasAuthorship W2765456447A5033986477 @default.
- W2765456447 hasAuthorship W2765456447A5075729645 @default.
- W2765456447 hasAuthorship W2765456447A5086664284 @default.
- W2765456447 hasConcept C119857082 @default.
- W2765456447 hasConcept C124101348 @default.
- W2765456447 hasConcept C136764020 @default.
- W2765456447 hasConcept C154945302 @default.
- W2765456447 hasConcept C15744967 @default.
- W2765456447 hasConcept C162324750 @default.
- W2765456447 hasConcept C187736073 @default.
- W2765456447 hasConcept C23123220 @default.
- W2765456447 hasConcept C2522767166 @default.
- W2765456447 hasConcept C2780451532 @default.
- W2765456447 hasConcept C2780586970 @default.
- W2765456447 hasConcept C41008148 @default.
- W2765456447 hasConcept C518677369 @default.
- W2765456447 hasConcept C75684735 @default.
- W2765456447 hasConcept C77805123 @default.
- W2765456447 hasConceptScore W2765456447C119857082 @default.
- W2765456447 hasConceptScore W2765456447C124101348 @default.
- W2765456447 hasConceptScore W2765456447C136764020 @default.
- W2765456447 hasConceptScore W2765456447C154945302 @default.
- W2765456447 hasConceptScore W2765456447C15744967 @default.
- W2765456447 hasConceptScore W2765456447C162324750 @default.
- W2765456447 hasConceptScore W2765456447C187736073 @default.
- W2765456447 hasConceptScore W2765456447C23123220 @default.
- W2765456447 hasConceptScore W2765456447C2522767166 @default.
- W2765456447 hasConceptScore W2765456447C2780451532 @default.
- W2765456447 hasConceptScore W2765456447C2780586970 @default.
- W2765456447 hasConceptScore W2765456447C41008148 @default.
- W2765456447 hasConceptScore W2765456447C518677369 @default.
- W2765456447 hasConceptScore W2765456447C75684735 @default.
- W2765456447 hasConceptScore W2765456447C77805123 @default.
- W2765456447 hasLocation W27654564471 @default.
- W2765456447 hasOpenAccess W2765456447 @default.
- W2765456447 hasPrimaryLocation W27654564471 @default.
- W2765456447 hasRelatedWork W2158312265 @default.
- W2765456447 hasRelatedWork W2346997479 @default.
- W2765456447 hasRelatedWork W2512244754 @default.
- W2765456447 hasRelatedWork W2748952813 @default.
- W2765456447 hasRelatedWork W2796950926 @default.
- W2765456447 hasRelatedWork W2807085819 @default.
- W2765456447 hasRelatedWork W3014300295 @default.
- W2765456447 hasRelatedWork W3149206686 @default.
- W2765456447 hasRelatedWork W3175948276 @default.
- W2765456447 hasRelatedWork W4309949240 @default.
- W2765456447 isParatext "false" @default.
- W2765456447 isRetracted "false" @default.
- W2765456447 magId "2765456447" @default.
- W2765456447 workType "article" @default.