Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765457434> ?p ?o ?g. }
- W2765457434 endingPage "43" @default.
- W2765457434 startingPage "1" @default.
- W2765457434 abstract "Divide-and-conquer recurrences of the form f ( n ) = f (⌊ n/2⌋ ) + f ( ⌈ n/2⌉ ) + g ( n ) ( n ⩾ 2), with g ( n ) and f (1) given, appear very frequently in the analysis of computer algorithms and related areas. While most previous methods and results focus on simpler crude approximation to the solution, we show that the solution always satisfies the simple identity f ( n ) = n P (log 2 n ) − Q ( n ) under an optimum (iff) condition on g ( n ). This form is not only an identity but also an asymptotic expansion because Q ( n ) is of a smaller order than linearity. Explicit forms for the continuous periodic function P are provided. We show how our results can be easily applied to many dozens of concrete examples collected from the literature and how they can be extended in various directions. Our method of proof is surprisingly simple and elementary but leads to the strongest types of results for all examples to which our theory applies." @default.
- W2765457434 created "2017-11-10" @default.
- W2765457434 creator A5003984705 @default.
- W2765457434 creator A5022615833 @default.
- W2765457434 creator A5015787840 @default.
- W2765457434 date "2017-10-25" @default.
- W2765457434 modified "2023-09-26" @default.
- W2765457434 title "Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half" @default.
- W2765457434 cites W1535772777 @default.
- W2765457434 cites W1595749660 @default.
- W2765457434 cites W1770054816 @default.
- W2765457434 cites W1966637680 @default.
- W2765457434 cites W1975849168 @default.
- W2765457434 cites W1977523642 @default.
- W2765457434 cites W1983360325 @default.
- W2765457434 cites W1983805560 @default.
- W2765457434 cites W1985461988 @default.
- W2765457434 cites W1986428580 @default.
- W2765457434 cites W1987516675 @default.
- W2765457434 cites W1990992047 @default.
- W2765457434 cites W2002086210 @default.
- W2765457434 cites W2003497093 @default.
- W2765457434 cites W2004688869 @default.
- W2765457434 cites W2004836868 @default.
- W2765457434 cites W2020085260 @default.
- W2765457434 cites W2024229565 @default.
- W2765457434 cites W2027655284 @default.
- W2765457434 cites W2028840720 @default.
- W2765457434 cites W2031891626 @default.
- W2765457434 cites W2032924886 @default.
- W2765457434 cites W2043484933 @default.
- W2765457434 cites W2051971152 @default.
- W2765457434 cites W2054777142 @default.
- W2765457434 cites W2055674322 @default.
- W2765457434 cites W2061499074 @default.
- W2765457434 cites W2063028341 @default.
- W2765457434 cites W2069852500 @default.
- W2765457434 cites W2081515148 @default.
- W2765457434 cites W2081911349 @default.
- W2765457434 cites W2082133472 @default.
- W2765457434 cites W2083770519 @default.
- W2765457434 cites W2084336096 @default.
- W2765457434 cites W2087183702 @default.
- W2765457434 cites W2089610771 @default.
- W2765457434 cites W2090041152 @default.
- W2765457434 cites W2091636694 @default.
- W2765457434 cites W2092519674 @default.
- W2765457434 cites W2092577037 @default.
- W2765457434 cites W2108058191 @default.
- W2765457434 cites W2109509083 @default.
- W2765457434 cites W2120206010 @default.
- W2765457434 cites W2150043537 @default.
- W2765457434 cites W2165061849 @default.
- W2765457434 cites W2171097166 @default.
- W2765457434 cites W2324016176 @default.
- W2765457434 cites W23674635 @default.
- W2765457434 cites W2624611589 @default.
- W2765457434 cites W2911302472 @default.
- W2765457434 cites W2913954881 @default.
- W2765457434 cites W37203355 @default.
- W2765457434 cites W4210391712 @default.
- W2765457434 cites W4238159413 @default.
- W2765457434 cites W4254977685 @default.
- W2765457434 cites W4298838381 @default.
- W2765457434 cites W78377100 @default.
- W2765457434 cites W3106396583 @default.
- W2765457434 doi "https://doi.org/10.1145/3127585" @default.
- W2765457434 hasPublicationYear "2017" @default.
- W2765457434 type Work @default.
- W2765457434 sameAs 2765457434 @default.
- W2765457434 citedByCount "8" @default.
- W2765457434 countsByYear W27654574342018 @default.
- W2765457434 countsByYear W27654574342019 @default.
- W2765457434 countsByYear W27654574342020 @default.
- W2765457434 countsByYear W27654574342021 @default.
- W2765457434 countsByYear W27654574342022 @default.
- W2765457434 crossrefType "journal-article" @default.
- W2765457434 hasAuthorship W2765457434A5003984705 @default.
- W2765457434 hasAuthorship W2765457434A5015787840 @default.
- W2765457434 hasAuthorship W2765457434A5022615833 @default.
- W2765457434 hasConcept C10138342 @default.
- W2765457434 hasConcept C111472728 @default.
- W2765457434 hasConcept C11413529 @default.
- W2765457434 hasConcept C114614502 @default.
- W2765457434 hasConcept C118615104 @default.
- W2765457434 hasConcept C120665830 @default.
- W2765457434 hasConcept C121332964 @default.
- W2765457434 hasConcept C138885662 @default.
- W2765457434 hasConcept C14036430 @default.
- W2765457434 hasConcept C162324750 @default.
- W2765457434 hasConcept C182306322 @default.
- W2765457434 hasConcept C192209626 @default.
- W2765457434 hasConcept C201292218 @default.
- W2765457434 hasConcept C204911207 @default.
- W2765457434 hasConcept C24890656 @default.
- W2765457434 hasConcept C2778355321 @default.
- W2765457434 hasConcept C2780586882 @default.
- W2765457434 hasConcept C28826006 @default.