Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765476078> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2765476078 abstract "Summary The simple-offset GPR reflection methodology has demonstrated very good detection efficiency of pipe flanges. While this method allows prospecting large sections of pipelines in relatively short times, data interpretation can take considerably longer time. In this work, we explore the use of Artificial Neural Networks (ANN) -one of the Supervised Learning techniques most frequently applied to GPR data-, for automatically identifying pipe flanges reflections in SO-GPR images. First, we trained several ANNs using simulated SO-GPR image patterns. The achieved performances varied with the network structures. Based on those results, an optimized ANN structure was determined. Then, this network was tested with synthetic and experimental data, providing satisfactory accuracy levels in both cases. This indicates than ANNs can be a very valuable tool for this type of application, especially useful in the case of large surveys. While data inspection by a qualified interpreter to check for false positive or false negative network predictions would still be necessary, processing time could be significantly reduced." @default.
- W2765476078 created "2017-11-10" @default.
- W2765476078 creator A5041467671 @default.
- W2765476078 creator A5057865584 @default.
- W2765476078 creator A5059078148 @default.
- W2765476078 date "2017-09-03" @default.
- W2765476078 modified "2023-10-07" @default.
- W2765476078 title "Identification of Pipe Flanges in GPR Images by Using Neural Networks" @default.
- W2765476078 doi "https://doi.org/10.3997/2214-4609.201702089" @default.
- W2765476078 hasPublicationYear "2017" @default.
- W2765476078 type Work @default.
- W2765476078 sameAs 2765476078 @default.
- W2765476078 citedByCount "1" @default.
- W2765476078 countsByYear W27654760782020 @default.
- W2765476078 crossrefType "proceedings-article" @default.
- W2765476078 hasAuthorship W2765476078A5041467671 @default.
- W2765476078 hasAuthorship W2765476078A5057865584 @default.
- W2765476078 hasAuthorship W2765476078A5059078148 @default.
- W2765476078 hasConcept C116834253 @default.
- W2765476078 hasConcept C119857082 @default.
- W2765476078 hasConcept C124101348 @default.
- W2765476078 hasConcept C127413603 @default.
- W2765476078 hasConcept C153180895 @default.
- W2765476078 hasConcept C154945302 @default.
- W2765476078 hasConcept C175291020 @default.
- W2765476078 hasConcept C175309249 @default.
- W2765476078 hasConcept C199360897 @default.
- W2765476078 hasConcept C41008148 @default.
- W2765476078 hasConcept C50644808 @default.
- W2765476078 hasConcept C554190296 @default.
- W2765476078 hasConcept C59822182 @default.
- W2765476078 hasConcept C65682993 @default.
- W2765476078 hasConcept C71813955 @default.
- W2765476078 hasConcept C76155785 @default.
- W2765476078 hasConcept C86803240 @default.
- W2765476078 hasConcept C87717796 @default.
- W2765476078 hasConceptScore W2765476078C116834253 @default.
- W2765476078 hasConceptScore W2765476078C119857082 @default.
- W2765476078 hasConceptScore W2765476078C124101348 @default.
- W2765476078 hasConceptScore W2765476078C127413603 @default.
- W2765476078 hasConceptScore W2765476078C153180895 @default.
- W2765476078 hasConceptScore W2765476078C154945302 @default.
- W2765476078 hasConceptScore W2765476078C175291020 @default.
- W2765476078 hasConceptScore W2765476078C175309249 @default.
- W2765476078 hasConceptScore W2765476078C199360897 @default.
- W2765476078 hasConceptScore W2765476078C41008148 @default.
- W2765476078 hasConceptScore W2765476078C50644808 @default.
- W2765476078 hasConceptScore W2765476078C554190296 @default.
- W2765476078 hasConceptScore W2765476078C59822182 @default.
- W2765476078 hasConceptScore W2765476078C65682993 @default.
- W2765476078 hasConceptScore W2765476078C71813955 @default.
- W2765476078 hasConceptScore W2765476078C76155785 @default.
- W2765476078 hasConceptScore W2765476078C86803240 @default.
- W2765476078 hasConceptScore W2765476078C87717796 @default.
- W2765476078 hasLocation W27654760781 @default.
- W2765476078 hasOpenAccess W2765476078 @default.
- W2765476078 hasPrimaryLocation W27654760781 @default.
- W2765476078 hasRelatedWork W1979460547 @default.
- W2765476078 hasRelatedWork W2023761911 @default.
- W2765476078 hasRelatedWork W2056664884 @default.
- W2765476078 hasRelatedWork W2321891161 @default.
- W2765476078 hasRelatedWork W2349956021 @default.
- W2765476078 hasRelatedWork W2557633128 @default.
- W2765476078 hasRelatedWork W2961085424 @default.
- W2765476078 hasRelatedWork W4281264596 @default.
- W2765476078 hasRelatedWork W4306674287 @default.
- W2765476078 hasRelatedWork W4224009465 @default.
- W2765476078 isParatext "false" @default.
- W2765476078 isRetracted "false" @default.
- W2765476078 magId "2765476078" @default.
- W2765476078 workType "article" @default.