Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765482076> ?p ?o ?g. }
- W2765482076 endingPage "66" @default.
- W2765482076 startingPage "51" @default.
- W2765482076 abstract "With the advance of technology, thousands of curves can be simultaneously recorded by electronic devices, such as simultaneous EEG and fMRI data. To study the relationship between these curves, we consider a functional linear regression model with functional response and functional predictors, where the number of predictive curves is much larger than the sample size. The high dimensionality of this problem poses theoretical and practical difficulties for the existing methods, including estimation inconsistency and prediction inaccuracy. Motivated by the simultaneous EEG and fMRI data, we focus on models with sparsity structures where most of the coefficient functions of the predictive curves have small norms. To take advantage of this sparsity structure and the smoothness of coefficient functions, we propose a simultaneous sparse-smooth penalty which is incorporated into a generalized functional eigenvalue problem to obtain estimates of the model. We establish the asymptotic upper bounds for the prediction and estimation errors as both the sample size and the number of predictive curves go to infinity. We implement the proposed method in the R package FRegSigComp. Simulation studies show that the proposed method has good predictive performance for models with sparsity structures. The proposed method is applied to a simultaneous EEG and fMRI dataset." @default.
- W2765482076 created "2017-11-10" @default.
- W2765482076 creator A5024239427 @default.
- W2765482076 creator A5058034276 @default.
- W2765482076 date "2018-01-01" @default.
- W2765482076 modified "2023-09-25" @default.
- W2765482076 title "Function-on-function regression with thousands of predictive curves" @default.
- W2765482076 cites W1521342285 @default.
- W2765482076 cites W1978002454 @default.
- W2765482076 cites W1990863607 @default.
- W2765482076 cites W1994218329 @default.
- W2765482076 cites W1998696958 @default.
- W2765482076 cites W2005102798 @default.
- W2765482076 cites W2013365346 @default.
- W2765482076 cites W2031381243 @default.
- W2765482076 cites W2033251710 @default.
- W2765482076 cites W2033779771 @default.
- W2765482076 cites W2037564010 @default.
- W2765482076 cites W2038580754 @default.
- W2765482076 cites W2044029924 @default.
- W2765482076 cites W2055807160 @default.
- W2765482076 cites W2067165060 @default.
- W2765482076 cites W2079948225 @default.
- W2765482076 cites W2106575405 @default.
- W2765482076 cites W2111464173 @default.
- W2765482076 cites W2114200978 @default.
- W2765482076 cites W2129336810 @default.
- W2765482076 cites W2134874509 @default.
- W2765482076 cites W2136139627 @default.
- W2765482076 cites W2162397718 @default.
- W2765482076 cites W2164363496 @default.
- W2765482076 cites W2169366712 @default.
- W2765482076 cites W2170814877 @default.
- W2765482076 cites W2180438109 @default.
- W2765482076 cites W2213513925 @default.
- W2765482076 cites W2311276019 @default.
- W2765482076 cites W2317771241 @default.
- W2765482076 cites W2553638918 @default.
- W2765482076 cites W4233774682 @default.
- W2765482076 doi "https://doi.org/10.1016/j.jmva.2017.10.002" @default.
- W2765482076 hasPublicationYear "2018" @default.
- W2765482076 type Work @default.
- W2765482076 sameAs 2765482076 @default.
- W2765482076 citedByCount "17" @default.
- W2765482076 countsByYear W27654820762018 @default.
- W2765482076 countsByYear W27654820762019 @default.
- W2765482076 countsByYear W27654820762020 @default.
- W2765482076 countsByYear W27654820762021 @default.
- W2765482076 countsByYear W27654820762022 @default.
- W2765482076 countsByYear W27654820762023 @default.
- W2765482076 crossrefType "journal-article" @default.
- W2765482076 hasAuthorship W2765482076A5024239427 @default.
- W2765482076 hasAuthorship W2765482076A5058034276 @default.
- W2765482076 hasConcept C102634674 @default.
- W2765482076 hasConcept C105795698 @default.
- W2765482076 hasConcept C111030470 @default.
- W2765482076 hasConcept C11413529 @default.
- W2765482076 hasConcept C121332964 @default.
- W2765482076 hasConcept C126255220 @default.
- W2765482076 hasConcept C129848803 @default.
- W2765482076 hasConcept C134306372 @default.
- W2765482076 hasConcept C14036430 @default.
- W2765482076 hasConcept C152877465 @default.
- W2765482076 hasConcept C154945302 @default.
- W2765482076 hasConcept C158693339 @default.
- W2765482076 hasConcept C28826006 @default.
- W2765482076 hasConcept C33923547 @default.
- W2765482076 hasConcept C41008148 @default.
- W2765482076 hasConcept C51820054 @default.
- W2765482076 hasConcept C62520636 @default.
- W2765482076 hasConcept C71176878 @default.
- W2765482076 hasConcept C78458016 @default.
- W2765482076 hasConcept C83546350 @default.
- W2765482076 hasConcept C86803240 @default.
- W2765482076 hasConceptScore W2765482076C102634674 @default.
- W2765482076 hasConceptScore W2765482076C105795698 @default.
- W2765482076 hasConceptScore W2765482076C111030470 @default.
- W2765482076 hasConceptScore W2765482076C11413529 @default.
- W2765482076 hasConceptScore W2765482076C121332964 @default.
- W2765482076 hasConceptScore W2765482076C126255220 @default.
- W2765482076 hasConceptScore W2765482076C129848803 @default.
- W2765482076 hasConceptScore W2765482076C134306372 @default.
- W2765482076 hasConceptScore W2765482076C14036430 @default.
- W2765482076 hasConceptScore W2765482076C152877465 @default.
- W2765482076 hasConceptScore W2765482076C154945302 @default.
- W2765482076 hasConceptScore W2765482076C158693339 @default.
- W2765482076 hasConceptScore W2765482076C28826006 @default.
- W2765482076 hasConceptScore W2765482076C33923547 @default.
- W2765482076 hasConceptScore W2765482076C41008148 @default.
- W2765482076 hasConceptScore W2765482076C51820054 @default.
- W2765482076 hasConceptScore W2765482076C62520636 @default.
- W2765482076 hasConceptScore W2765482076C71176878 @default.
- W2765482076 hasConceptScore W2765482076C78458016 @default.
- W2765482076 hasConceptScore W2765482076C83546350 @default.
- W2765482076 hasConceptScore W2765482076C86803240 @default.
- W2765482076 hasLocation W27654820761 @default.
- W2765482076 hasOpenAccess W2765482076 @default.
- W2765482076 hasPrimaryLocation W27654820761 @default.