Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765527842> ?p ?o ?g. }
- W2765527842 endingPage "1414" @default.
- W2765527842 startingPage "1398" @default.
- W2765527842 abstract "In psychology, mixed-effects models and latent-curve models are both widely used to explore growth over time. Despite this widespread popularity, some confusion remains regarding the overlap of these different approaches. Recent articles have shown that the two modeling frameworks are mathematically equivalent in many cases, which is often interpreted to mean that one’s choice of modeling framework is merely a matter of personal preference. However, some important differences in estimation and specification can lead to the models producing very different results when implemented in software. Thus, mathematical equivalence does not necessarily equate to practical equivalence in all cases. In this article, we discuss these two common approaches to growth modeling and highlight contexts in which the choice of the modeling framework (and, consequently, the software) can directly impact the model estimates, or in which certain analyses can be facilitated in one framework over the other. We show that, unless the data are pristine, with a large sample size, linear or polynomial growth, and no missing data, and unless the participants have the same number of measurements collected at the same set of time points, one framework is often more advantageous to adopt. We provide several empirical examples to illustrate these situations, as well as ample software code so that researchers can make informed decisions regarding which framework will be the most beneficial and most straightforward for their research interests." @default.
- W2765527842 created "2017-11-10" @default.
- W2765527842 creator A5005236933 @default.
- W2765527842 creator A5057205670 @default.
- W2765527842 date "2017-10-24" @default.
- W2765527842 modified "2023-10-11" @default.
- W2765527842 title "Differentiating between mixed-effects and latent-curve approaches to growth modeling" @default.
- W2765527842 cites W1587682423 @default.
- W2765527842 cites W1660498867 @default.
- W2765527842 cites W1970440050 @default.
- W2765527842 cites W1971674230 @default.
- W2765527842 cites W1972542529 @default.
- W2765527842 cites W1976566530 @default.
- W2765527842 cites W1978018200 @default.
- W2765527842 cites W1978053532 @default.
- W2765527842 cites W1981747359 @default.
- W2765527842 cites W1982287434 @default.
- W2765527842 cites W1982585616 @default.
- W2765527842 cites W1985151092 @default.
- W2765527842 cites W1995078399 @default.
- W2765527842 cites W1996464973 @default.
- W2765527842 cites W1999405554 @default.
- W2765527842 cites W2000351638 @default.
- W2765527842 cites W2001931541 @default.
- W2765527842 cites W2007356270 @default.
- W2765527842 cites W2008028985 @default.
- W2765527842 cites W2015814749 @default.
- W2765527842 cites W2019173334 @default.
- W2765527842 cites W2019655958 @default.
- W2765527842 cites W2021325163 @default.
- W2765527842 cites W2024085858 @default.
- W2765527842 cites W2029266105 @default.
- W2765527842 cites W2029761052 @default.
- W2765527842 cites W2030355223 @default.
- W2765527842 cites W2031028430 @default.
- W2765527842 cites W2034820849 @default.
- W2765527842 cites W2037261083 @default.
- W2765527842 cites W2041373569 @default.
- W2765527842 cites W2041993782 @default.
- W2765527842 cites W2042538592 @default.
- W2765527842 cites W2047238473 @default.
- W2765527842 cites W2049139564 @default.
- W2765527842 cites W2052396525 @default.
- W2765527842 cites W2056883378 @default.
- W2765527842 cites W2060444352 @default.
- W2765527842 cites W2060755763 @default.
- W2765527842 cites W2060999123 @default.
- W2765527842 cites W2067829136 @default.
- W2765527842 cites W2071196327 @default.
- W2765527842 cites W2071527134 @default.
- W2765527842 cites W2072014595 @default.
- W2765527842 cites W2072245003 @default.
- W2765527842 cites W2073852608 @default.
- W2765527842 cites W2075371448 @default.
- W2765527842 cites W2075384682 @default.
- W2765527842 cites W2078170899 @default.
- W2765527842 cites W2079875205 @default.
- W2765527842 cites W2080134433 @default.
- W2765527842 cites W2080372453 @default.
- W2765527842 cites W2081841849 @default.
- W2765527842 cites W2082246284 @default.
- W2765527842 cites W2084518146 @default.
- W2765527842 cites W2092825650 @default.
- W2765527842 cites W2104171693 @default.
- W2765527842 cites W2105892385 @default.
- W2765527842 cites W2110146339 @default.
- W2765527842 cites W2113253256 @default.
- W2765527842 cites W2116879114 @default.
- W2765527842 cites W2124149447 @default.
- W2765527842 cites W2124615740 @default.
- W2765527842 cites W2129383046 @default.
- W2765527842 cites W2129751332 @default.
- W2765527842 cites W2141125801 @default.
- W2765527842 cites W2143170158 @default.
- W2765527842 cites W2149608872 @default.
- W2765527842 cites W2153238990 @default.
- W2765527842 cites W2153281140 @default.
- W2765527842 cites W2154137324 @default.
- W2765527842 cites W2154732345 @default.
- W2765527842 cites W2158457237 @default.
- W2765527842 cites W2170467533 @default.
- W2765527842 cites W2262295304 @default.
- W2765527842 cites W2293738871 @default.
- W2765527842 cites W2317815946 @default.
- W2765527842 cites W2428070046 @default.
- W2765527842 cites W2472077414 @default.
- W2765527842 cites W2472664035 @default.
- W2765527842 cites W2475699224 @default.
- W2765527842 cites W2562025518 @default.
- W2765527842 cites W2586926761 @default.
- W2765527842 cites W2890373521 @default.
- W2765527842 cites W4241635929 @default.
- W2765527842 cites W4251134907 @default.
- W2765527842 cites W609313093 @default.
- W2765527842 doi "https://doi.org/10.3758/s13428-017-0976-5" @default.
- W2765527842 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29067672" @default.
- W2765527842 hasPublicationYear "2017" @default.
- W2765527842 type Work @default.