Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765598014> ?p ?o ?g. }
- W2765598014 endingPage "988" @default.
- W2765598014 startingPage "980" @default.
- W2765598014 abstract "The ability to noninvasively assess skeletal muscle microstructure, which predicts function and disease, would be of significant clinical value. One method that holds this promise is diffusion tensor magnetic resonance imaging (DT-MRI), which is sensitive to the microscopic diffusion of water within tissues and has become ubiquitous in neuroimaging as a way of assessing neuronal structure and damage. However, its application to the assessment of changes in muscle microstructure associated with injury, pathology, or age remains poorly defined, because it is difficult to precisely control muscle microstructural features in vivo. However, recent advances in additive manufacturing technologies allow precision-engineered diffusion phantoms with histology informed skeletal muscle geometry to be manufactured. Therefore, the goal of this study was to develop skeletal muscle phantoms at relevant size scales to relate microstructural features to MRI-based diffusion measurements. A digital light projection based rapid 3D printing method was used to fabricate polyethylene glycol diacrylate based diffusion phantoms with (1) idealized muscle geometry (no geometry; fiber sizes of 30, 50, or 70 μm or fiber size of 50 μm with 40% of walls randomly deleted) or (2) histology-based geometry (normal and after 30-days of denervation) containing 20% or 50% phosphate-buffered saline (PBS). Mean absolute percent error (8%) of the printed phantoms indicated high conformity to templates when “fibers” were >50 μm. A multiple spin-echo echo planar imaging diffusion sequence, capable of acquiring diffusion weighted data at several echo times, was used in an attempt to combine relaxometry and diffusion techniques with the goal of separating intracellular and extracellular diffusion signals. When fiber size increased (30–70 μm) in the 20% PBS phantom, fractional anisotropy (FA) decreased (0.32–0.26) and mean diffusivity (MD) increased (0.44 × 10−3 mm2/s–0.70 × 10−3 mm2/s). Similarly, when fiber size increased from 30 to 70 μm in the 50% PBS diffusion phantoms, a small change in FA was observed (0.18–0.22), but MD increased from 0.86 × 10−3 mm2/s to 1.79 × 10−3 mm2/s. This study demonstrates a novel application of tissue engineering to understand complex diffusion signals in skeletal muscle. Through this work, we have also demonstrated the feasibility of 3D printing for skeletal muscle with relevant matrix geometries and physiologically relevant tissue characteristics." @default.
- W2765598014 created "2017-11-10" @default.
- W2765598014 creator A5007505462 @default.
- W2765598014 creator A5018690367 @default.
- W2765598014 creator A5023130708 @default.
- W2765598014 creator A5074984612 @default.
- W2765598014 creator A5086517526 @default.
- W2765598014 creator A5090363793 @default.
- W2765598014 date "2017-09-01" @default.
- W2765598014 modified "2023-10-12" @default.
- W2765598014 title "<sup />A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle" @default.
- W2765598014 cites W1490774024 @default.
- W2765598014 cites W1528848920 @default.
- W2765598014 cites W1551595741 @default.
- W2765598014 cites W1911898688 @default.
- W2765598014 cites W1947875118 @default.
- W2765598014 cites W1961133757 @default.
- W2765598014 cites W1964802316 @default.
- W2765598014 cites W1965761285 @default.
- W2765598014 cites W1972151127 @default.
- W2765598014 cites W1981821484 @default.
- W2765598014 cites W1988343344 @default.
- W2765598014 cites W1988981465 @default.
- W2765598014 cites W1996213453 @default.
- W2765598014 cites W2008156359 @default.
- W2765598014 cites W2008931635 @default.
- W2765598014 cites W2011012667 @default.
- W2765598014 cites W2021846841 @default.
- W2765598014 cites W2030818224 @default.
- W2765598014 cites W2033110793 @default.
- W2765598014 cites W2036749034 @default.
- W2765598014 cites W2038202065 @default.
- W2765598014 cites W2045970895 @default.
- W2765598014 cites W2052630208 @default.
- W2765598014 cites W2057944795 @default.
- W2765598014 cites W2073133229 @default.
- W2765598014 cites W2077249172 @default.
- W2765598014 cites W2081381526 @default.
- W2765598014 cites W2083027767 @default.
- W2765598014 cites W2086762695 @default.
- W2765598014 cites W2090687144 @default.
- W2765598014 cites W2090991686 @default.
- W2765598014 cites W2097548633 @default.
- W2765598014 cites W2107636994 @default.
- W2765598014 cites W2108216698 @default.
- W2765598014 cites W2117140276 @default.
- W2765598014 cites W2118165119 @default.
- W2765598014 cites W2128648235 @default.
- W2765598014 cites W2136293998 @default.
- W2765598014 cites W2140271015 @default.
- W2765598014 cites W2142154934 @default.
- W2765598014 cites W2154293726 @default.
- W2765598014 cites W2264718512 @default.
- W2765598014 cites W2323861871 @default.
- W2765598014 cites W2560515848 @default.
- W2765598014 cites W4243393726 @default.
- W2765598014 doi "https://doi.org/10.1089/ten.tea.2016.0438" @default.
- W2765598014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5610393" @default.
- W2765598014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28338417" @default.
- W2765598014 hasPublicationYear "2017" @default.
- W2765598014 type Work @default.
- W2765598014 sameAs 2765598014 @default.
- W2765598014 citedByCount "28" @default.
- W2765598014 countsByYear W27655980142017 @default.
- W2765598014 countsByYear W27655980142018 @default.
- W2765598014 countsByYear W27655980142019 @default.
- W2765598014 countsByYear W27655980142020 @default.
- W2765598014 countsByYear W27655980142021 @default.
- W2765598014 countsByYear W27655980142022 @default.
- W2765598014 countsByYear W27655980142023 @default.
- W2765598014 crossrefType "journal-article" @default.
- W2765598014 hasAuthorship W2765598014A5007505462 @default.
- W2765598014 hasAuthorship W2765598014A5018690367 @default.
- W2765598014 hasAuthorship W2765598014A5023130708 @default.
- W2765598014 hasAuthorship W2765598014A5074984612 @default.
- W2765598014 hasAuthorship W2765598014A5086517526 @default.
- W2765598014 hasAuthorship W2765598014A5090363793 @default.
- W2765598014 hasBestOaLocation W27655980142 @default.
- W2765598014 hasConcept C105702510 @default.
- W2765598014 hasConcept C121332964 @default.
- W2765598014 hasConcept C126838900 @default.
- W2765598014 hasConcept C136229726 @default.
- W2765598014 hasConcept C143409427 @default.
- W2765598014 hasConcept C149550507 @default.
- W2765598014 hasConcept C192562407 @default.
- W2765598014 hasConcept C2779959927 @default.
- W2765598014 hasConcept C69357855 @default.
- W2765598014 hasConcept C71924100 @default.
- W2765598014 hasConcept C73286259 @default.
- W2765598014 hasConcept C83042744 @default.
- W2765598014 hasConcept C97355855 @default.
- W2765598014 hasConceptScore W2765598014C105702510 @default.
- W2765598014 hasConceptScore W2765598014C121332964 @default.
- W2765598014 hasConceptScore W2765598014C126838900 @default.
- W2765598014 hasConceptScore W2765598014C136229726 @default.
- W2765598014 hasConceptScore W2765598014C143409427 @default.
- W2765598014 hasConceptScore W2765598014C149550507 @default.
- W2765598014 hasConceptScore W2765598014C192562407 @default.