Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765614794> ?p ?o ?g. }
- W2765614794 endingPage "30" @default.
- W2765614794 startingPage "17" @default.
- W2765614794 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 584:17-30 (2017) - DOI: https://doi.org/10.3354/meps12354 A ‘fuzzy clustering’ approach to conceptual confusion: how to classify natural ecological associations Dario Fiorentino1,2,*, Roland Pesch3, Carmen-Pia Guenther3, Lars Gutow4, Jan Holstein4, Jennifer Dannheim4, Brigitte Ebbe4, Tim Bildstein3, Winfried Schroeder5, Bastian Schuchardt3, Thomas Brey2,4, Karen Helen Wiltshire1 1Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List, Germany 2Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg, 23129 Oldenburg, Germany 3Bioconsult Schuchardt & Scholle GbR, Reeder-Bischoff-Straße 54, 28757 Bremen, Germany 4Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 5University of Vechta, Chair of Landscape Ecology, PO 1553, 49364 Vechta, Germany *Corresponding author: dario.fiorentino@awi.de ABSTRACT: The concept of the marine ecological community has recently experienced renewed attention, mainly owing to a shift in conservation policies from targeting single and specific objectives (e.g. species) towards more integrated approaches. Despite the value of communities as distinct entities, e.g. for conservation purposes, there is still an ongoing debate on the nature of species associations. They are seen either as communities, cohesive units of non-randomly associated and interacting members, or as assemblages, groups of species that are randomly associated. We investigated such dualism using fuzzy logic applied to a large dataset in the German Bight (southeastern North Sea). Fuzzy logic provides the flexibility needed to describe complex patterns of natural systems. Assigning objects to more than one class, it enables the depiction of transitions, avoiding the rigid division into communities or assemblages. Therefore we identified areas with either structured or random species associations and mapped boundaries between communities or assemblages in this more natural way. We then described the impact of the chosen sampling design on the community identification. Four communities, their core areas and probability of occurrence were identified in the German Bight: AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA, GONIADELLA-SPISULA, and PHORONIS. They were assessed by estimating overlap and compactness and supported by analysis of beta-diversity. Overall, 62% of the study area was characterized by high species turnover and instability. These areas are very relevant for conservation issues, but become undetectable when studies choose sampling designs with little information or at small spatial scales. KEY WORDS: Ecological communities · Benthic macrofauna · Fuzzy classification · Spatial scales Full text in pdf format Supplementary material PreviousNextCite this article as: Fiorentino D, Pesch R, Guenther CP, Gutow L and others (2017) A ‘fuzzy clustering’ approach to conceptual confusion: how to classify natural ecological associations. Mar Ecol Prog Ser 584:17-30. https://doi.org/10.3354/meps12354 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 584. Online publication date: December 07, 2017 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2017 Inter-Research." @default.
- W2765614794 created "2017-11-10" @default.
- W2765614794 creator A5001421860 @default.
- W2765614794 creator A5004424769 @default.
- W2765614794 creator A5004528858 @default.
- W2765614794 creator A5009181764 @default.
- W2765614794 creator A5019067519 @default.
- W2765614794 creator A5026873026 @default.
- W2765614794 creator A5038081964 @default.
- W2765614794 creator A5047157453 @default.
- W2765614794 creator A5057850653 @default.
- W2765614794 creator A5060241510 @default.
- W2765614794 creator A5069882582 @default.
- W2765614794 creator A5082172198 @default.
- W2765614794 date "2017-12-07" @default.
- W2765614794 modified "2023-10-18" @default.
- W2765614794 title "A ‘fuzzy clustering’ approach to conceptual confusion: how to classify natural ecological associations" @default.
- W2765614794 cites W1492535541 @default.
- W2765614794 cites W1588034641 @default.
- W2765614794 cites W1597703900 @default.
- W2765614794 cites W1627226388 @default.
- W2765614794 cites W1706555275 @default.
- W2765614794 cites W1963694877 @default.
- W2765614794 cites W1969074929 @default.
- W2765614794 cites W1975207073 @default.
- W2765614794 cites W1981212824 @default.
- W2765614794 cites W1982612574 @default.
- W2765614794 cites W1985361258 @default.
- W2765614794 cites W1994638325 @default.
- W2765614794 cites W2000955570 @default.
- W2765614794 cites W2001731206 @default.
- W2765614794 cites W2004661139 @default.
- W2765614794 cites W2005956740 @default.
- W2765614794 cites W2007873570 @default.
- W2765614794 cites W2008788144 @default.
- W2765614794 cites W2012151325 @default.
- W2765614794 cites W2016278847 @default.
- W2765614794 cites W2016482995 @default.
- W2765614794 cites W2024697317 @default.
- W2765614794 cites W2029043569 @default.
- W2765614794 cites W2029906715 @default.
- W2765614794 cites W2030879654 @default.
- W2765614794 cites W2033316778 @default.
- W2765614794 cites W2046803845 @default.
- W2765614794 cites W2048052169 @default.
- W2765614794 cites W2048998446 @default.
- W2765614794 cites W2049925641 @default.
- W2765614794 cites W2050095779 @default.
- W2765614794 cites W2057348197 @default.
- W2765614794 cites W2058779902 @default.
- W2765614794 cites W2059430660 @default.
- W2765614794 cites W2068185027 @default.
- W2765614794 cites W2071221561 @default.
- W2765614794 cites W2077575342 @default.
- W2765614794 cites W2078754341 @default.
- W2765614794 cites W2084087917 @default.
- W2765614794 cites W2086053402 @default.
- W2765614794 cites W2089777064 @default.
- W2765614794 cites W2100002927 @default.
- W2765614794 cites W2127366570 @default.
- W2765614794 cites W2128791014 @default.
- W2765614794 cites W2130305318 @default.
- W2765614794 cites W2137686028 @default.
- W2765614794 cites W2139094846 @default.
- W2765614794 cites W2142063041 @default.
- W2765614794 cites W2143160355 @default.
- W2765614794 cites W2144209037 @default.
- W2765614794 cites W2150883847 @default.
- W2765614794 cites W2151055859 @default.
- W2765614794 cites W2156215888 @default.
- W2765614794 cites W2158675158 @default.
- W2765614794 cites W2159400622 @default.
- W2765614794 cites W2167969650 @default.
- W2765614794 cites W2168235678 @default.
- W2765614794 cites W2174436695 @default.
- W2765614794 cites W225780862 @default.
- W2765614794 cites W2292292880 @default.
- W2765614794 cites W2312350018 @default.
- W2765614794 cites W2325571381 @default.
- W2765614794 cites W2330085666 @default.
- W2765614794 cites W2479531384 @default.
- W2765614794 cites W4211007335 @default.
- W2765614794 cites W4238166456 @default.
- W2765614794 cites W4241350055 @default.
- W2765614794 doi "https://doi.org/10.3354/meps12354" @default.
- W2765614794 hasPublicationYear "2017" @default.
- W2765614794 type Work @default.
- W2765614794 sameAs 2765614794 @default.
- W2765614794 citedByCount "13" @default.
- W2765614794 countsByYear W27656147942018 @default.
- W2765614794 countsByYear W27656147942019 @default.
- W2765614794 countsByYear W27656147942020 @default.
- W2765614794 countsByYear W27656147942021 @default.
- W2765614794 countsByYear W27656147942022 @default.
- W2765614794 countsByYear W27656147942023 @default.
- W2765614794 crossrefType "journal-article" @default.
- W2765614794 hasAuthorship W2765614794A5001421860 @default.
- W2765614794 hasAuthorship W2765614794A5004424769 @default.