Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765625656> ?p ?o ?g. }
- W2765625656 endingPage "234" @default.
- W2765625656 startingPage "219" @default.
- W2765625656 abstract "Abstract Dynamic programming (DP) is good at recognizing on-line standard-stroke-order Chinese characters. We propose a two-stage bipartite weighted matching to rearrange the stroke order of a test on-line Chinese handwriting before recognition. At the first layer, for each stroke pair which matches one stroke in the test handwriting with one stroke in the reference character, we generate a stroke-based vector graph (SVG) and the bipartite weighted matching determines the best stroke permutation of the handwriting, stroke-based matched vector graph (SMVG), from the SVG. At the second layer, we superimpose all SMVGs to form a character-based vector graph (CVG), and the bipartite weighted matching calculates the final stroke mapping between the test handwriting and the reference character. Experimental results reveal that the modified split-and-merge DP matching using the stroke adjustment method recognizes on-line stroke-order-varied handwritings with accuracy 89%, much higher than accuracy 5.2% for the original split-and-merge DP matching." @default.
- W2765625656 created "2017-11-10" @default.
- W2765625656 creator A5046879538 @default.
- W2765625656 creator A5078149237 @default.
- W2765625656 date "2018-04-01" @default.
- W2765625656 modified "2023-09-23" @default.
- W2765625656 title "Stroke-order-free on-line Chinese character recognition by stroke adjustment of two-layer bipartite weighted matching" @default.
- W2765625656 cites W1276447405 @default.
- W2765625656 cites W1982659846 @default.
- W2765625656 cites W1982950348 @default.
- W2765625656 cites W1993918770 @default.
- W2765625656 cites W1994204888 @default.
- W2765625656 cites W2020096152 @default.
- W2765625656 cites W2035487336 @default.
- W2765625656 cites W2036187742 @default.
- W2765625656 cites W2039490938 @default.
- W2765625656 cites W2041268432 @default.
- W2765625656 cites W2045527716 @default.
- W2765625656 cites W2049970057 @default.
- W2765625656 cites W2050182871 @default.
- W2765625656 cites W2055075080 @default.
- W2765625656 cites W2059037881 @default.
- W2765625656 cites W2073743311 @default.
- W2765625656 cites W2074893211 @default.
- W2765625656 cites W2078605651 @default.
- W2765625656 cites W2085262576 @default.
- W2765625656 cites W2087791076 @default.
- W2765625656 cites W2102903729 @default.
- W2765625656 cites W2105038716 @default.
- W2765625656 cites W2107792892 @default.
- W2765625656 cites W2111464019 @default.
- W2765625656 cites W2115675483 @default.
- W2765625656 cites W2125838338 @default.
- W2765625656 cites W2134930964 @default.
- W2765625656 cites W2143786659 @default.
- W2765625656 cites W2147650756 @default.
- W2765625656 cites W2155673861 @default.
- W2765625656 cites W2163517496 @default.
- W2765625656 cites W2170959797 @default.
- W2765625656 cites W2186648744 @default.
- W2765625656 cites W2485152821 @default.
- W2765625656 doi "https://doi.org/10.1016/j.future.2017.09.074" @default.
- W2765625656 hasPublicationYear "2018" @default.
- W2765625656 type Work @default.
- W2765625656 sameAs 2765625656 @default.
- W2765625656 citedByCount "7" @default.
- W2765625656 countsByYear W27656256562018 @default.
- W2765625656 countsByYear W27656256562020 @default.
- W2765625656 countsByYear W27656256562021 @default.
- W2765625656 countsByYear W27656256562022 @default.
- W2765625656 countsByYear W27656256562023 @default.
- W2765625656 crossrefType "journal-article" @default.
- W2765625656 hasAuthorship W2765625656A5046879538 @default.
- W2765625656 hasAuthorship W2765625656A5078149237 @default.
- W2765625656 hasConcept C10138342 @default.
- W2765625656 hasConcept C105795698 @default.
- W2765625656 hasConcept C115961682 @default.
- W2765625656 hasConcept C127413603 @default.
- W2765625656 hasConcept C132525143 @default.
- W2765625656 hasConcept C153180895 @default.
- W2765625656 hasConcept C154945302 @default.
- W2765625656 hasConcept C162324750 @default.
- W2765625656 hasConcept C165064840 @default.
- W2765625656 hasConcept C171250308 @default.
- W2765625656 hasConcept C182306322 @default.
- W2765625656 hasConcept C192562407 @default.
- W2765625656 hasConcept C197657726 @default.
- W2765625656 hasConcept C198352243 @default.
- W2765625656 hasConcept C2524010 @default.
- W2765625656 hasConcept C2779227376 @default.
- W2765625656 hasConcept C2780645631 @default.
- W2765625656 hasConcept C2780861071 @default.
- W2765625656 hasConcept C2987247673 @default.
- W2765625656 hasConcept C33923547 @default.
- W2765625656 hasConcept C41008148 @default.
- W2765625656 hasConcept C78519656 @default.
- W2765625656 hasConcept C80444323 @default.
- W2765625656 hasConceptScore W2765625656C10138342 @default.
- W2765625656 hasConceptScore W2765625656C105795698 @default.
- W2765625656 hasConceptScore W2765625656C115961682 @default.
- W2765625656 hasConceptScore W2765625656C127413603 @default.
- W2765625656 hasConceptScore W2765625656C132525143 @default.
- W2765625656 hasConceptScore W2765625656C153180895 @default.
- W2765625656 hasConceptScore W2765625656C154945302 @default.
- W2765625656 hasConceptScore W2765625656C162324750 @default.
- W2765625656 hasConceptScore W2765625656C165064840 @default.
- W2765625656 hasConceptScore W2765625656C171250308 @default.
- W2765625656 hasConceptScore W2765625656C182306322 @default.
- W2765625656 hasConceptScore W2765625656C192562407 @default.
- W2765625656 hasConceptScore W2765625656C197657726 @default.
- W2765625656 hasConceptScore W2765625656C198352243 @default.
- W2765625656 hasConceptScore W2765625656C2524010 @default.
- W2765625656 hasConceptScore W2765625656C2779227376 @default.
- W2765625656 hasConceptScore W2765625656C2780645631 @default.
- W2765625656 hasConceptScore W2765625656C2780861071 @default.
- W2765625656 hasConceptScore W2765625656C2987247673 @default.
- W2765625656 hasConceptScore W2765625656C33923547 @default.
- W2765625656 hasConceptScore W2765625656C41008148 @default.